Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 2 | 175-196

Article title

Determination of Kinetics in Gas-Liquid Reaction Systems. An Overview


Title variants

Languages of publication



The aim of this paper is to present a brief review of the determination methods of reaction kinetics in gas-liquid systems with a special emphasis on CO2 absorption in aqueous alkanolamine solutions. Both homogenous and heterogeneous experimental techniques are described with the corresponding theoretical background needed for the interpretation of the results. The case of CO2 reaction in aqueous solutions of methyldiethanolamine is discussed as an illustrative example. It was demonstrated that various measurement techniques and methods of analyzing the experimental data can result in different expressions for the kinetic rate constants.
Celem niniejszej pracy jest przegląd metod określania kinetyki reakcji gaz-ciecz ze szczególnym uwzględnieniem absorpcji CO2 w wodnych roztworach alkanoloamin. Omówiono zarówno homofazowe, jak i heterofazowe techniki eksperymentalne wraz z podstawami teoretycznymi niezbędnymi do interpretacji wyników. Jako przykład zinterpretowano wyniki własnych badań absorpcji CO2 w wodnych roztworach metylodietanoloaminy. Wykazano, że różne techniki pomiarowe i metody analizy danych doświadczalnych mają wpływ na otrzymaną zależność stałej szybkości reakcji od temperatury.









Physical description


1 - 1 - 2012
24 - 5 - 2012


  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland


  • Vaidya PD, Kenig E. Y. CO2-alkanolamine reaction kinetics: A review of recent studies. Chem Eng Technol. 2007;30(11):1467-1474. DOI: 10.1002/ceat.200700268.[WoS][Crossref]
  • Shah YT. Gas-Liquid-Solid Reactor Design. McGraw-Hill; 1979.
  • Vaidya PD, Kenig EY. Gas-liquid reaction kinetics: a review of determination methods. Chem Eng Comm. 2007;194(12):1543-1565. DOI: 10.1080/00986440701518314.[Crossref]
  • Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R. Kinetics of reactive absorption of carbon dioxide in high CO2-loaded concentrated aqueous monoethanolamine solutions. Chem Eng Sci. 2003;58(23):5195-5210. DOI: 10.1016/j.ces.2003.08.014.[Crossref]
  • Zarzycki R, Chacuk A. Absorption: Fundamentals and Applications. Oxford: Pergamon Press; 1993.
  • van Swaaij WPM, Versteeg GF. Mass transfer accompanied with complex reversible chemical reactions in gas-liquid systems: an overview. Chem Eng Sci. 1992;47:3181-3195. DOI: 10.1016/0009-2509(92)85028-A.[Crossref]
  • Derks PWJ, Kleingeld T, van Aken C, Hogendoorn JA, Versteeg GF. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem Eng Sci. 2006;61(20):6837-6854. DOI:10.1016/j.ces.2006.07.009.[Crossref]
  • Kierzkowska-Pawlak H, Zarzycki R. Solubility of carbon dioxide and nitrous oxide in water + methyldiethanolamine and ethanol + methyldiethanolamine solutions. J Chem Eng Data. 2002;47(6):1506-1509. DOI: 10.1021/je020093v.[Crossref]
  • Versteeg GF, van Dijck LAJ, van Swaaij WPM. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem Eng Comm. 1996;144:113-158. DOI: 10.1080/00986449608936450.[Crossref]
  • Jamal A, Meisen A, Jim Lim C. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor. I. Experimental apparatus and mathematical modeling. Chem Eng Sci. 2006;61:6571-6589. DOI: 10.1016/j.ces.2006.04.046.[Crossref]
  • Portugala AF, Derks PWJ, Versteeg GF, Magalhaesa FD, Mendesa A. Characterization of potassium glycinate for carbon dioxide absorption purposes. Chem Eng Sci. 2007;62:6534-6547. DOI:10.1016/j.ces.2007.07.068.[WoS][Crossref]
  • Littel RJ, van Swaaij WPM, Versteeg GF. Kinetics of carbon dioxide with tertiary amines in aqueous solutions. AIChE J. 1990;36:1633-1640. DOI: 10.1002/aic.690361103.[WoS][Crossref]
  • Zhang X, Zhang C-F, Liu Y. Kinetics of absorption of CO2 into aqueous solution of MDEA blended with DEA. Ind Eng Chem Res. 2002;41(5):1135-1141. DOI: 10.1021/ie010605j.[Crossref]
  • Vaidya PD, Kenig EY. A study on CO2 absorption kinetics by aqueous solutions of N.N-diethylethanolamine and N-ethylethanolamine. Chem Eng Tech. 2009;32(4):556-563. DOI: 10.1002/ceat.200800573.[WoS][Crossref]
  • Kierzkowska-Pawlak H, Chacuk A. Kinetics of carbon dioxide absorption into aqueous MDEA solutions. Ecol Chem Eng S. 2010;17(4):463-475.
  • Littel RJ, Versteeg GF, van Swaaij WPM. Physical absorption into non-aqueous solutions in a stirred cell reactor. Chem Eng Sci. 1991;46(12):3308-3313. DOI: 10.1016/0009-2509(91)85036-W.[Crossref]
  • Li J, Henni A, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous ethylenediamine, ethylethanolamine, and diethylmonoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique. Ind. Eng. Chem. Res. 2007;46:4426-4434. DOI: 10.1021/ie0614982.[WoS][Crossref]
  • Ali SH, Merchant SQ, Fahim MA. Reaction kinetics of some secondary alkanolamines with carbon dioxide in aqueous solutions by stopped-flow technique. Sep Purif Technol. 2002;27:121-126. DOI: 10.1016/S1383-5866(01)00206-4.[Crossref]
  • Henni A, Li J, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous 1-amino-2-propanol.3-amino-1-propanol. and dimethylmonoethanolamine solutions in the temperature range of 298-313 K using the stopped-flow technique. Ind Eng Chem Res. 2008;47(7):2213-2220. DOI: dx.doi.org/10.1021/ie070587r.[WoS]
  • Siemieniec M, Kierzkowska-Pawlak H, Chacuk A. Reaction kinetics of CO2 in aqueous diethanolamine solutions in the temperature range of 293÷313 K using the stopped-flow technique. Ecol Chem Eng S. 2012;19(1):55-66. DOI 10.2478/v10216-011-0006-y.[Crossref]
  • Kierzkowska-Pawlak H, Siemieniec M, Chacuk A. Reaction kinetics of CO2 in aqueous methyldiethanolamine solutions using the stopped-flow technique. Chem Proc Eng. 2012;33(1):7-18. DOI: 10.2478/v10176-012-0001-6[Crossref]
  • Wang. R-Y. Rapid Scan. Stopped-Flow Kinetics. In: Encyclopedia of Inorganic Chemistry. John Wiley & Sons. Ltd; 2008. DOI: 10.1002/0470862106.ia326.[Crossref]
  • Knipe AC, McLean D, Tranter NL. A fast response conductivity amplifier for chemical kinetics. J Phys E. 1974;7:586-590. DOI:10.1088/0022-3735/7/7/025.[Crossref]
  • Haimour N, Bidarian A, Sandall OC. Kinetics of the reaction between carbon dioxide and methyldiethanolamine. Chem Eng Sci. 1987;42(6):1393-1398. DOI: 10.1016/0009-2509(87)85011-X.[Crossref]
  • Jamal A, Meisen A, Jim Lim C. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor - II. Experimental results and parameter estimation. Chem Eng Sci. 2006;61(19):6590-6603. DOI: 10.1016/j.ces.2006.04.047.[Crossref]
  • Ko J-J, Li M-H. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water. Chem Eng Sci. 2000;55(19):4139-4147. DOI: 10.1016/S0009-2509(00)00079-8.[Crossref]
  • Moniuk W, Pohorecki R. Absorpcja CO2 w wodnych roztworach N-metylodwuetanoloaminy. Inż Chem i Proces. 2000;21(1):183-197.
  • Pani F, Gaunand A, Cadours R, Bouallou C, Richon D. Kinetics of absorption of CO2 in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K. J Chem Eng Data. 1997;42(2):353-359. DOI: 10.1021/je960251g.[Crossref]
  • Rinker EB, Ashour SS, Sandall OC. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of N-methylodiethanolamine. Chem Eng Sci. 1995;50(5):755-768. DOI: 10.1016/0009-2509(94)00444-V.[Crossref]
  • Kierzkowska-Pawlak H, Chacuk A. Numerical simulation of CO2 absorption into aqueous MDEA solutions. Korean J Chem Eng. 2012;29(6): in press. DOI: 10.1007/s11814-011-0244-9.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.