Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 19 | 1 | 97-105

Article title

Effect of Magnesium Nutrition of Onion (Allium cepa L.). Part I. Yielding and Nutrient Status

Content

Title variants

Languages of publication

EN

Abstracts

EN
Magnesium (Mg) serves specific physiological functions in plants, as it participates in 250÷400 processes and may not be replaced by other elements, even those exhibiting similar physicochemical properties, such as Co2+, Mn2+ or Ni2+. The aim of the conducted studies was to optimize magnesium nutrition of onion (Allium cepa L.), through the evaluation of yielding of plants, and to determine its effect on contents of the following elements in leaves and bulbs: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). Magnesium was applied in the quick-acting form, MgSO4·7H2O, based on the chemical analyses of soil, in doses corresponding to 50, 100, 150 and 200 mg Mg·dm-3 soil. The other nutrients were supplemented to standard levels recommended for the cultivation of onion, amounting to (in mg·dm-3 soil) 150 N, 80 P and 200 K. Magnesium nutrition was found to have a positive effect on yielding of onion and its quality. Significantly the highest total yield (4.85 kg·m-2) and merchantable yield (4.78 kg·m-2) were obtained when applying Mg-100, which amounted to an increase by 38% and 45% in comparison with the control combination. Plant nutrition with magnesium in case of leaves significantly affected an improvement of their nutrient status for nitrogen, deterioration of calcium nutrition, while in case of leaves and bulbs that of potassium. Analyzed levels of magnesium nutrition had a significant effect on nutrient status of leaves and bulbs for this nutrient. Leaves accumulated more nitrogen, potassium, calcium and magnesium than bulbs. Controlled magnesium nutrition of plants is an effective method of biofortification of onion with this nutrient.
PL
Magnez (Mg) pełni w roślinie specyficzne funkcje fizjologiczne - bierze udział w 250-400 procesach i nie może być zastąpiony przez inne pierwiastki, nawet o zbliżonych właściwościach fizykochemicznych, takie jak Co2+, Mn2+ czy Ni2+. Celem prowadzonych badań była optymalizacja żywienia cebuli (Allium cepa L.) magnezem poprzez ocenę plonowania roślin oraz jego wpływu na zawartość w liściach i cebulach: azotu (N), fosforu (P), potasu (K), wapnia (Ca) i magnezu (Mg). Magnez zastosowano w formie szybko działającego MgSO4·7H2O, na podstawie analizy chemicznej gleby, w dawkach odpowiadających: 50, 100, 150, 200 mg Mg·dm-3 gleby. Pozostałe składniki pokarmowe uzupełniano do poziomów standardowych polecanych do uprawy cebuli wynoszących (w mg·dm-3 gleby): 150 N, 80 P, 200 K. Stwierdzono pozytywny wpływ żywienia magnezem na plonowanie cebuli oraz jej jakość. Istotnie największy plon ogólny (4,85 kg·m-2) oraz handlowy (4,78 kg·m-2) uzyskano, stosując Mg-100, co stanowiło wzrost o 38% i 45% w porównaniu z kombinacją kontrolną. Żywienie roślin magnezem wpływało istotnie w przypadku liści na poprawę stanu ich odżywienia azotem, pogorszenie odżywienia wapniem - a w przypadku liści i cebuli - potasem. Badane poziomy żywienia magnezem wpływały istotnie na stan odżywienia liści i cebuli tym składnikiem. Liście gromadziły więcej azotu, potasu, wapnia i magnezu niż cebula. Kontrolowane żywienie roślin magnezem jest efektywną metodą biofortyfikacji cebuli w ten składnik.

Publisher

Year

Volume

19

Issue

1

Pages

97-105

Physical description

Dates

published
1 - 1 - 2012
online
8 - 11 - 2011

Contributors

  • Department of Plant Nutrition, University of Life Sciences in Poznan, ul. Zgorzelecka 4, 60-199 Poznań, Poland
author
  • Department of Plant Nutrition, University of Life Sciences in Poznan, ul. Zgorzelecka 4, 60-199 Poznań, Poland
  • Department of Vegetable Crops, University of Life Sciences in Poznan, ul. Dąbrowskiego 159, 60-594 Poznań, Poland

References

  • Barker AV, Pilbeam DJ. Handbook of Plant Nutrition. Boca Raton: Taylor & Francis Group; 2007, 146-181. DOI: 10.1201/9781420014877.fmatt.[Crossref]
  • Kirkby EA, Mengel K. The role of magnesium in plant nutrition. Z Pflanzenern Bodenk. 1976;2:209-222.
  • Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. New York: Academic Press; 1995.
  • Neales TF. Components of the total magnesium content within the leaves of white clover and perennial rye grass. Nature. 1956;177:388-389. DOI: 10.1038/177388a0.[Crossref]
  • Huang B. Nutrient accumulation and associated root characteristics in response to drought stress in tall fescue cultivars. Hort Science. 2001;36(1):148-152. DOI: 35400009866683.0380.
  • Kolb TE, McCormick LH. Etiology of sugar maple decline in four Pennsylvania stands. Can J Forest Res. 1993;23(11):2395-2402. DOI: 10.1139/x93-296.[Crossref]
  • Huang JW, Grunes DL. Effects of root temperature and nitrogen form on magnesium uptake and translocation by wheat seedlings. J Plant Nutr. 1992;15(6/7):991-1005.[Crossref]
  • Jensén P, Perby J. Growth and accumulation of N, K+, Ca2+, and Mg2+ in barley exposed to various nutrient regimes and root/shoot temperatures. Physiol Plant. 1986;67:159-165. DOI: 10.1111/j.1399-3054.1986.tb02438.x.[Crossref]
  • Marier TE. Solution pH influences on growth and mineral element concentrations of ‘Waimanalo’ papaya seedlings. J Plant Nutr. 1998;212:601-2612. DOI: 10.1080/01904169809365591.[Crossref]
  • Melakeberhan H, Jones AL, Bird GW. Effects of soil pH and Pratylenchus penetrans on the mortality of ‘Mazzard’ cherry seedlings and their susceptibility to Pseudomonas syringae pv. syringae. Can. J Plant Pathol. 2000;22:131-137. DOI: 10.1080/07060660009500486.[Crossref]
  • Tan KZ, Keltjens WG, Findenegg GR. Acid soil damage in sorghum genotypes - role of magnesium - deficiency and root impairment. Plant Soil. 1992;139(2):149-155. DOI: 10.1007/BF00009305.[Crossref]
  • ---
  • Niemirowicz-Szczytt K. Hodowla roślin warzywnych. Warszawa: SGGW; 1993 (in Polish).
  • Skąpski H, Dąbrowska B. Uprawa warzyw w polu. Warszawa: SGGW; 1994 (in Polish). ISBN 83-00-02846-3.
  • Rumpel J. Uprawa cebuli. Warszawa: Hortpress; 2000 (in Polish).
  • Nowosielski O. Metody oznaczania potrzeb nawożenia. Warszawa: PWRiL; 1974, 1-91 (in Polish).
  • IUNG. Metody badań laboratoryjnych w stacjach chemiczno-rolniczych. Cz. III. Badanie gleb, ziem i podłoży spod warzyw i kwiatów oraz części wskaźnikowych roślin w celach diagnostycznych. Puławy: IUNG; 1983, 28-81 (in Polish).
  • Sady W. Nawożenie warzyw polowych. Warszawa: Plantpress; 2000, 8-33 (in Polish).
  • Metodyka Integrowanej Produkcji Cebuli. Warszawa: Państwowa Inspekcja Ochrony Roślin i Nasiennictwa; 2005, 1-38 (in Polish).
  • Breś W, Golcz A, Komosa A, Kozik E, Tyksiński W. Nawożenie roślin ogrodniczych. Poznań: Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu; 2008, 5-189 (in Polish). ISBN 978-83-7160-548-2.
  • Dobrzański A, Adamicki F. Uprawa cebuli. Kraków: Plantpress; 2006 (in Polish).
  • Nowosielski O. Znaczenie potasu i magnezu w uprawie roślin ogrodniczych. In: Materiały na Konferencję Ogólnopolską. Skierniewice: Instytut Warzywnictwa; 1994, 9-13 (in Polish).
  • Adamicki F, Dobrzański A. Cebula. Technologia uprawy i przechowywania. Skierniewice: Instytut Warzywnictwa; 1999 (in Polish).
  • Gurgul E, Kołota E, Herman B, Biczak R. The effect of magnesium and potassium fertilization on chlorophyll, sugars and ascorbic acid contents of onion and chive leaves. Zesz Nauk AR we Wrocławiu. 1998; Rolnictwo LXXIII, 347:155-164; ISSN 0137-1959.
  • Wyszkowski M. Effect of magnesium on yield formation and the mutual relations between some ions in crops. Olsztyn: Rozpr Monograf UW-M; 2001, 52.
  • Kleiber T, Bosiacki M, Markiewicz B. Effect of the controlled fertilization on the mineral components of chosen varieties of onion (Allium cepa L.). Part I. Macroelements. Ecological Chemistry and Engineering. 2010;17(2-3):269-278. ISSN 1898-6188.
  • Coolong TW, Kopsell DA, Kopsell DE, Randle WM. Nitrogen and sulfur influence nutrient usage and accumulation in onion. J Plant Nutr. 2004;27(9):1667-1686. DOI: 10.1081/PLN-200026010.[Crossref]
  • Zink FW. Studies on the growth rate and nutrient absorption of onion. Hilgardia. 1966;37(8):203-218.
  • Mills HA, Jones Jr. JB. Plant Analysis Handbook. II. Athens (GA): MicroMacro Publishing Inc.; 1996, 6-62.
  • Tahvonen R. Contents of selected elements in some fruits, berries and vegetables on the Finnish market in 1987-1989. J Food Comp Anal. 1993;6:75-86. DOI: 10.1006/jfca.1993.1009.[Crossref]
  • Błażewicz-Woźniak M, Kęsik T, Wach D, Konopiński M. The influence of conservation tillage on the mineral elements content in soil and chemical composition of onion. Acta Sci Pol Hortorum Cultus. 2008;7(2):61-72. ISSN 1644-0692.
  • Lasa B, Frechilla S, Aleu M, González-Moro B, Lamsfus C, Aparicio-Tejo PM. Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil. 2000;225:167-174. DOI: 10.1023/A:1026568329860.[Crossref]
  • Puech L, Mehne-Jakobs B. Histology of magnesium-deficient Norway spruce needles influenced by nitrogen source. Tree Physiol. 1997;17(5):301-310. DOI: 10.1093/treephys/17.5.301.[Crossref][PubMed]
  • Wilcox GE, Hoff JE, Jones CM. Ammonium reduction of Ca and Mg content of tomato and sweetcorn leaf tissue and influence on incidence of blossom end root of tomato fruit. J Amer Soc Hort Sci. 1973;98:86-89.
  • Chance III WO, Somda ZC, Mills HA. Effect of nitrogen form during the flowering period on zucchini squash growth and nutrient element uptake. J Plant Nutr. 1999;22:597-607. DOI: 0.1080/01904169909365655.
  • James DW, Hurst CJ, Tindall TA. Alfalfa cultivar response to phosphorus and potassium deficiency - Elemental composition of the herbage. J Plant Nutr. 1995;18(11):2447-2464. DOI: 10.1080/01904169509365076.[Crossref]
  • Fageria NK, Zimmermann FJP, Baligar VC. Lime and phosphorus interactions on growth and nutrient uptake by upland rice, wheat, common bean, and corn in an oxisol. J Plant Nutr. 1995;18(11):2519-2532. DOI: 10.1080/01904169509365081.[Crossref]
  • Reinbott TM, Blevins DG. Phosphorus and temperature effects and magnesium, calcium, and potassium in wheat and tall fescue leaves. Agron J. 1994;86(3):523-529. DOI: 10.1080/01904169509365081.[Crossref]
  • Reinbott TM, Blevins DG. Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Soil. 1999;209(2):263-273. DOI: 10.1023/A:1004646732225.[Crossref]
  • Cao W, Tibbitts TW. Growth, carbon dioxide exchange and mineral accumulation in potatoes grown at different magnesium concentrations. J Plant Nutr. 1992;15(9):1359-1371. DOI: 10.1080/01904169209364403.[Crossref][PubMed]
  • Appenroth KJ, Gabrys H, Scheuerlein RW. Ion antagonism in phytochrome-mediated calciumdependent germination of turions of Spirodela polyrhiza (L.) Schleiden. Planta. 1999;208:583-587. DOI: 10.1007/s004250050596.[Crossref]
  • Carvajal M, Martínez V, Cerdá A. Influence of magnesium and salinity on tomato plants grown in hydroponic culture. J Plant Nutr. 1999;22:177-190. DOI: 10.1080/01904169909365616.[Crossref]
  • Hicklenton PR, Cairns KG. Calcium and magnesium nutrition of containerized Cotoneaster dammeri ‘Coral Beauty’. J Environ Hort. 1992;10(2):104-107.
  • Schwartz S, Bar-Yosef B. Magnesium uptake by tomato plants as affected by Mg and Ca concentration in solution culture and plant age. J Agron. 1983;75(2):267-272.
  • Choudhury TMA, Khanif YM. Evaluation of effects of nitrogen and magnesium fertilization on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. J Plant Nutr. 2001;24(6),855-871. DOI: 10.1081/PLN-100103778.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10216-011-0010-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.