Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 679-688

Article title

Distribution of Extracellular Polymeric Substances and their Role in Aerobic Granule Formation


Title variants

Languages of publication



This study investigated the quantity and distribution of extracellular polymeric substances (EPS) in aerobic granules. Results showed that EPS play an important role in the formation and stabilisation of granules. The content of EPS significantly increases during the first weeks of biogranulation. An analysis of EPS in the granules revealed that the protein level was 5 times higher than in polysaccharides. The increase of protein content correlated with the growth of cell hydrophobicity (r2 = 0.95). EPS and hydrophobicity are important factors in cell adhesion and formation of granules. The aim of this work was also to determine the distribution of EPS in the granule structure. In situ EPS staining showed that EPS are located mostly in the center of granules and in the subsurface layer. The major components of the EPE matrix are proteins, nucleic acids and β-polysaccharides. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on protein content.









Physical description


1 - 12 - 2012
28 - 12 - 2012


  • Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland


  • Adav S.S., Lin J., Yang Z., Whiteley Ch.G., Lee D.J., Peng X.F., Zhang Z.P., 2010. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol. Adv., 28, 255-280. DOI: 10.1016/j.biotechadv.2009.08.006.[WoS][PubMed][Crossref]
  • Arrojo B., Mosquera-Corral A., Garrido JM., Mendez R., 2004. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res., 3389-3399. DOI: 10.1016/j.watres.2004.05.002.[Crossref][PubMed]
  • Chen M.Y., Lee D.J., Tay J.H., 2007. Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol., 73, 1463-1469. DOI: 10.1007/s00253-006-0617-x.[WoS][Crossref]
  • Chiu Z.C., Chen M.Y., Lee D.J., Tay S.T.-L., Tay J.H., Show K.Y., 2006. Diffusivity of oxygen in aerobic granules. Biotechnol. Bioeng., 94, 2006, 505-513. DOI: 10.1002/bit.20862.[Crossref][PubMed]
  • Clesceri L.S., Greenberg A.E., Eaton A.D. (Eds.), 1999. Standard methods for the examination of water and wastewater. 20th Edition. Amer. Public Health Assn., Amer. Water Works Assn., Water Pollut. Control Fed.
  • Dubois Dubois M.K., Gilles J.K., Hamilton J.K., Rebers P.A., Smith F., 1956. Procedure-phenol/sulfuric acid method. Anal. Chem., 28, 350-352.
  • Frølund B., Palmgren R., Keiding K., Nielsen P.H., 1996. Extraction of extracellular polymers form activated sludge using a cation exchange resin. Water Res., 30, 1749-1758. DOI: 10.1016/0043-1354(95)00323-1.[Crossref]
  • Gołaszewski J., Puzio-Idźkowska M., Stawiana-Kosiorek A., Załuski D., 2003. Statistic for naturalists. Wydawnictwo Uniwersytetu Warmińsko Mazurskiego (In Polish).
  • Kończak B., Miksch K., 2011a. Proces of aerobic granules formation: State of the art. Sci. Rev. Eng. Env. Sci., 51, 43-51.
  • Kończak B., Miksch K., 2011b. Influence of Ca2+, Mg2+, Fe3+ ions on the formaion of granular biomass. Przemysł Chemiczny, 90, 2002-2005.
  • Kong Y., Liu Y.-Q., Tay J.-H., Wong F.-S., Zhu J., 2009. Aerobic granulation in sequencing batch reactor with different reactor height/diameter ratios. Enzyme Microbial Technol., 45, 379-383. DOI: 10.1016/j.enzmictec.2009.06.014.[Crossref]
  • Laspidou CH.S., Rittman B.E., 2002. A united theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res., 36, 2711-2720. DOI: 10.1016/S0043-1354(01)00413-4.[Crossref]
  • Lee D-J., Chen Y-Y., Show K-Y., Whiteley Ch.G., Tay J-H., 2010. Advances in aerobic granule formation and granule stability in the course of storage and reactor operations. Biotechnol. Adv., 28, 919-934. DOI: 10.1016/j.biotechadv.2010.08.007.[Crossref][WoS]
  • Liu L., Gao D.W., Zhang M., Fu Y., 2010a. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. J. Hazard. Mater., 181, 382-387. DOI: 10.1016/j.jhazmat.2010.05.021.[Crossref]
  • Liu T., Yang S-F., Liu Q-S., Tay J-H., 2003. The role of cell hydrophobicity in the formation of aerobic granules. Curr. Microbiol., 46, 270-274. DOI: 10.1007/s00284-002-3878-3.[PubMed][Crossref]
  • Liu T.-Q., Moy B., Kong Y.-H., Tay J.-H., 2010b. Formation, physical characteristic and microbial structure of aerobic granules in pilot-scale sequencing batch reactor for Real wastewater treatment. Enzyme MicrobialTechnol., 46, 520-525. DOI: 10.1016/j.enzmictec.2010.02.001.[Crossref]
  • Liu Y., Li Y., Wang Z-W., 2007. Calcium accumulation in acetate-fed aerobic granules, In: Liu Y. (Ed.), Wastewater Purification. Aerobic granulation in sequencing batch reactors. 223-237. DOI: 10.1201/9781420053685.ch13.[Crossref]
  • Liu Y., Tay J.H., 2004. State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv., 22, 533-563. DOI: 10.1016/j.biotechadv.2004.05.001.[PubMed][Crossref]
  • Liu Y., Yang S-F., Liu Q-S., Tay J-H., 2003. The role of cell hydrophobicity in the formation of aerobic granules, Curr. Microbiol., 46, 0270-0274. DOI: 10.1007/s00284-002-3878-3.[Crossref]
  • McSwain B.S., Irvine R.L., Hausner M., Wilderer P.A., 2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol., 71, 1051-1057. DOI: 10.1128/AEM.71.2.1051-1057.2005.[Crossref]
  • Morgenroth E., Sherden T., van Loosdrecht M.C.M., Heijnen J.J., Wilder P.A., 1997. Aerobic granular sludge in a sequencing batch reactor. Water Res., 31, 3191-3194. DOI: 10.1016/S0043-1354(97)00216-9.[Crossref]
  • Rosenberg M., Gutnick D., Rosenberg E., 1980. Adherence of bacteria to hydrocarbons: A simple method for measuring cellsurface hydrophobicity. FEMS Microbiol. Lett., 9, 29-33. DOI: 10.1111/j.1574- 6968.1980.tb05599.x.[Crossref]
  • Seviour T., Pijuan M., Nicholson T., Keller J., Yuan Z., 2009. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. WaterRes., 43, 4469-4478. DOI: 10.1016/j.watres.2009.07.018.[WoS][Crossref]
  • Tian Y., 2008. Behaviour of bacterial extracellular polymeric substances from activated sludge: A review. Int. J. Environ. Pollut., 32, 78-89. DOI: 10.1504/IJEP.2008.016900.[WoS][Crossref]
  • Wang Z., Liu L. Yao J., Cai W., 2006. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 63, 1728-1735. DOI: 10.1016/j.chemosphere.2005.09.018.[Crossref]
  • Wang Z-W., Liu Y., Tay J-H., 2005. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol., 69, 469-73. DOI: 10.1007/s00253-005-1991-5.[Crossref]
  • Wojnowska-Baryła I., Cydzik-Kwiatkowska A., Szatkowski M., Gutowski Ł., 2010. Granulation of activated sludge in SBR reactor. Biotechnologia, 1, 161-169.
  • Zhang L.L., Feng X.X., Zhu N.W., Chen J.M., 2007. Role of extracellular protein in the formation and stability of aerobic granules. Enzymes Microb. Technol., 41, 551-557. DOI: 10.1016/j.enzmictec.2007.05.001.[Crossref]
  • ---

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.