Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 603-610

Article title

Harvesting Energy and Hydrogen from Microbes

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article presents a critical mini-review of research conducted on bioelectrochemical reactors with emphasis placed on microbial fuel cells (MFC) and microbial electrolysis cells (MEC). The principle of operation and typical constructions of MFCs and MECs were presented. The types of anodes and cathodes, ion-selective membranes and microorganisms used were discussed along with their limitations.

Publisher

Year

Volume

33

Issue

4

Pages

603-610

Physical description

Dates

published
1 - 12 - 2012
online
28 - 12 - 2012

Contributors

  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland

References

  • Franks A.E., Nevin K.P., 2010. Microbial fuel cells, a current review, Energies, 3, 889-919. DOI: 10.3390/en3050899.[Crossref]
  • Freguia S., Tsujimura S., Kano K., 2010. Electron transfer pathways in microbial oxygen biocathodes. Electrochimica Acta, 55, 813-818. DOI: 10.1016/j.electacta.2009.09.027.[Crossref]
  • Hamelers H.V.M., Ter Heijne A., Sleutels T.H.J.A., Jeremiasse A.W., Strik D.P.B.T.B., Buisman C.J.N., 2010. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85, 1673-1685. DOI: 10.1007/s00253-009-2357-1.[PubMed][WoS][Crossref]
  • Kim B.H., Kim H.J., Hyun M.S., Park D.H., 1999. Direct electrode re action of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbial. Biotech., 9, 127-131.
  • Kim K.-Y., Chae K.-J., Choi M.-J., Ajayi F.F., Jang A., Kim C.-W., Kim I.S., 2011. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour. Tech., 102, 4144-4149. DOI: 10.1016/j.biortech.2010.12.036.[Crossref]
  • Lefebvre O., Uzabiaga A., Chang I.S., Kim B., Ng H.Y., 2011. Microbial fuel cells for energy self-sufficient domestic wastewater treatment - a review and discussion from energetic consideration. Appl. Microbiol.Biotechnol., 89, 259-270. DOI: 10.1007/s00253-010-2881-z.[Crossref][WoS]
  • Li C., Ding L., Cui H., Zhang L., Xu K., Ren H., 2012. Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour. Technol., 116, 459-465. DOI: 10.1016/j.biortech.2012.03.115.[Crossref][WoS]
  • Liang P., Wang H.Y., Xia X., Huang X., Mo Y. H., Cao X.X., Fan M. Z., 2011. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosens. Bioelectron., 26, 3000-3004. DOI: 10.1016/j.bios.2010.12.002.[PubMed][Crossref][WoS]
  • Liu J., Qiao Y., Guo C.X., Lim S., Song H., Li C. M., 2012. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol., 114, 275-280, DOI: 10.1016/j.biortech.2012.02.116.[Crossref]
  • Logan B. E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K., 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40, 5181-5192. DOI: 10.1021/es0605016.[Crossref][PubMed]
  • Logan B.E., 2010. Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol., 85, 1665-1671. DOI: 10.1007/s00253-009-2378-9.[Crossref][WoS][PubMed]
  • Lovley B.E., 2008. The microbe electric: conversion of organic matter to electricity. Current Opinion Biotechnol., 19, 564-571. DOI: 10.1016/j.copbio.2008.10.005.[Crossref]
  • Lowy D.A., Tender L.M., 2008. Harvesting energy from the marine sediment-water interface: III. Kinetics activity of quinone- and antimony-based anode materials. J. Power Sources, 185, 70-75. DOI: 10.1016/j.jpowsour.2008.06.079.[WoS][Crossref]
  • Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R., 2010. Microbial electrosynthesis: Feedin microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1, e00103-10. DOI: 10.1128/mBio.00103-10.[WoS][Crossref]
  • Rabaey K., Girguis P., Nielsen L.K., 2011. Metabolic and practical considerations on microbial electrosynthesis. Current Opinion in Biotechnol., 22, 371-377. DOI: 10.1016/j.copbio.2011.01.010.[Crossref][WoS]
  • Reimers C.E., Tender L.M., Ferting S., Wang W., 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol., 35, 192-195. DOI: 10.1021/es001223s.[Crossref]
  • Rozendal R.A., Hamelers H.V.M., Buisman C.J.N., 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol., 40, 5206-5211. DOI: 10.1021/es060387r.[PubMed][Crossref]
  • Rozendal R.A., Jeremiasse A.W., Hamelers H.V.M., Buisman C.J.N., 2008. Hydrogen production with a microbial biocathode. Environ. Sci. Technol., 42, 629-634. DOI: 10.1021/es071720+.[Crossref][WoS][PubMed]
  • Tang X., Guo K., Li H., Du Z., Tian J., 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol., 102, 3558-3560. DOI: 10.1016/j.biortech.2010.09.022. ter Heijne A., Hamelers H.V.M., Saakes M., Buisman C.J.N., 2008. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta, 53, 5697-5703. DOI: 10.1016/j.electacta.2008.03.032.[Crossref]
  • Wang H-Y., Bernarda A., Huang C-Y., Li D-J., Chang J-S., 2011. Micro-sized microbial fuel cell: A mini review. Bioresour. Technol., 102, 235-243. DOI: 10.1016/j.biortech.2010.07.007.[WoS][PubMed][Crossref]
  • Wang X., Cheng SA., Feng Y.J., Merrill M.D., Saito T., Logan B.E., 2009. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43, 6870-6874. DOI: 10.1021/es900997w.[Crossref][WoS][PubMed]
  • Wei J., Liang P., Huang X., 2011. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol., 102, 9335-9344. DOI: 10.1016/j.biortech.2011.07.019.[WoS][Crossref][PubMed]
  • Yang Y., Sun G., Xu M., 2011. Microbial fuel cells come of age. J. Chem. Technol. Biotechnol., 86, 625-632. DOI: 10.1002/jctb.2570.[Crossref]
  • ---

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0050-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.