Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 585-594

Article title

Fermentative Hydrogen Production - Process Design and Bioreactors


Title variants

Languages of publication



Substitution of fossil fuels with alternative energy carriers has become necessary due to climate change and fossil fuel shortages. Fermentation as a way of producing biohydrogen, an attractive and environmentally friendly future energy carrier, has captured received increasing attention in recent years because of its high H2 production rate and a variety of readily available waste substrates used in the process. This paper discusses the state-of-the-art of fermentative biohydrogen production, factors affecting this process, as well as various bioreactor configurations and performance parameters, including H2 yield and H2 production rate.









Physical description


1 - 12 - 2012
28 - 12 - 2012


  • A. Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland


  • Abreu A.A., Karakashev D., Angelidaki I., Sousa D.Z., Alves M.M., 2012. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnol. Biofuels, 5, 6. DOI: 10.1186/1754-6834-5-6.[Crossref][PubMed]
  • Akutsu Y., Lee D-Y., Li Y-Y, Noike T., 2009. Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy, 34, 5365-5372. DOI: 10.1016/j.ijhydene.2009.04.052.[Crossref]
  • Angenent L.T., Karim K., Al-Dahhan M.H., Wrenn B.A., Domiguez-Espinoza R., 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22, 477- 485. DOI: 10.1016/j.tibtech.2004.07.001.[PubMed][Crossref]
  • Argun H., Kargi F., Kapdan I.K., 2009. Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int. J. Hydrogen Energy, 34, 6181-6188. DOI: 10.1016/j.ijhydene.2009.05.130.[Crossref]
  • Balat M., 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy, 33, 4013-4029. DOI: 10.1016/j.ijhydene.2008.05.047.[Crossref]
  • Ball M., Wietschel M., 2009. The future of hydrogen - opportunities and challenges. Int. J. Hydrogen Energy, 34, 615-627. DOI: 10.1016/j.ijhydene.2008.11.014.[Crossref]
  • Barros A. R., Amorim E. M. C., Reis C. M., Shida G. M., Silva E. L., 2010. Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time. Int. J. Hydrogen Energy, 35, 3379-3388. DOI: 10.1016/j.ijhydene.2010.01.108.[Crossref]
  • Bastidas-Oyanedel J-R., Mohd-Zaki Z., Zeng R. J., Bernet N., Pratt S., Steyer J-P., Batstone D. J., 2012. Gas controlled hydrogen fermentation. Bioresour. Technol. 110, 503-509. DOI: 10.1016/j.biortech.2012.01.122.[Crossref]
  • Brentner L.B., Peccia J., Zimmerman J.B., 2010. Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda. Environ. Sci. Technol., 44, 2243-2254. DOI: 10.1021/es9030613.[PubMed][Crossref]
  • Cai G., Jin B., Monis P., Saint C., 2011. Metabolic flux network and analysis of fermentative hydrogen production. Biotechnol. Adv., 29, 375-387. DOI: 10.1016/j.biotechadv.2011.02.001.[PubMed][Crossref]
  • Chen C-Y., Yang M-H., Yeh K-L., Liu C-H, Chang J-S., 2008. Biohydrogen production using sequential twostage dark and photo fermentation processes. Int. J. Hydrogen Energy, 33, 4755-4762. DOI: 10.1016/j.ijhydene.2008.06.055.[Crossref]
  • Chen W.M., Tseng Z.J., Lee K.S., Chang J.S., 2005. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 30, 1063-1070. DOI:10.1016/j.ijhydene.2004.09.008.[Crossref]
  • Dabrock B., Bahl H., Gottschalk G., 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol., 58, 1233-1239.[PubMed]
  • Demirbas A., 2011. Competitive liquid biofuels from biomass. Appl. Energy, 88, 17-28. DOI: 10.1016/j.apenergy.2010.07.016.[Crossref]
  • Dong L., Zhenhong Y., Yongming S., Xiaoying K., Yu Z., 2009. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int. J. Hydrogen Energy, 34, 812-820. DOI: 10.1016/j.ijhydene.2008.11.031.[Crossref]
  • Gadhamshetty V., Johnson D.C., Nirmlakhandan N., Smith G.B., Deng S., 2009. Dark and acidic conditions for fermentative hydrogen production. Int. J. Hydrogen Energy, 34, 821-826. DOI: 10.1016/j.ijhydene.2008.11.040.[Crossref]
  • Guo X.M., Trably E., Latrille E., Carrère H., Steyer J-P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy, 35, 10660-10673. DOI: 10.1016/j.ijhydene.2010.03.008.[Crossref]
  • Hallenbeck P.C., 2005. Fundamentals of the fermentative production of hydrogen. Water Sci. Technol. 52, 21-29.
  • Hallenbeck P.C., 2009. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy, 34, 7379-7389. DOI: 10.1016/j.ijhydene.2008.12.080.[Crossref]
  • Hallenbeck P.C., Ghosh D., 2009. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol., 27, 287-297. DOI: 10.1016/j.tibtech.2009.02.004.[PubMed][Crossref]
  • Han J., Lee D., Cho J., Lee J., Kim S., 2012. Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes. Bioprocess Biosyst. Eng. 35, 151-157. DOI: 10.1007/s00449-011-0593-0.[Crossref]
  • Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172-184. DOI: 10.1016/j.ijhydene.2006.08.014.[Crossref]
  • Hu B., Chen S., 2007. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int. J. Hydrogen Energy, 32, 3266-3273. DOI: 10.1016/j.ijhydene.2007.03.005.[Crossref]
  • Hung C-H., Chang Y-T., Chang Y-J., 2011. Role of microorganisms other then Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems - A review. Bioresour. Technol., 102, 8437-8444. DOI: 10.1016/j.biortech.2011.02.084.[Crossref]
  • James B.D., Baum G.N., Perez J., Baum K.N., 2009. Technoeconomic boundary analysis of biological pathways to hydrogen production. US Department of Energy: September 2009.
  • Jung K-W., Kim D-H., Kim S-H., Shin H-S., 2011a. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour. Technol. 102, 8612-8620. DOI: 10.1016/j.biortech.2011.03.056.[PubMed][Crossref]
  • Jung K-W., Kim D-H., Shin H-S., 2011b. A simple method to reduce the start-up in a H2-producing UASB reactor. Int. J. Hydrogen Energy, 36, 1466-1473. DOI: 10.1016/j.ijhydene.2010.09.095.[Crossref]
  • Kang J-H., Kim D., Lee T-J., 2012. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Bioresour. Technol. 109, 239-243. DOI: 10.1016/j.biortech.2012.01.048.[PubMed][Crossref]
  • Karadag D., Puhakka J.A., 2010. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int. J. Hydrogen Energy, 35, 10954-10959. DOI: 10.1016/j.ijhydene.2010.07.070.[Crossref]
  • Keskin T., Giusti L., Azbar N., 2012. Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int. J. Hydrogen Energy, 37, 1418-1424. DOI: 10.1016/j.ijhydene.2011.10.013.[Crossref]
  • Kleerebezem R., van Loosdrecht M.C.M., 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18, 207-212. DOI: 10.1016/j.copbio.2007.05.001.[Crossref][PubMed]
  • Kothari R., Singh D.P., Tyagi V.V., Tyagi S.K., 2012. Fermentative hydrogen production - An alternative clean energy source. Renew. Sust. Energy Rev., 16, 2337-2346. DOI: 10.1016/j.rser.2012.01.002.[Crossref]
  • Kruse O., Rupprecht J., Mussgnug J. H., Dismukes G. C., Hankamer B., 2005. Photosynthesis: A blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci., 4, 957-967. DOI: 10.1039/B506923H.[Crossref][PubMed]
  • Lee D-J., Show K-Y., Su A., 2011. Dark fermentation on biohydrogen production: Pure culture. Bioresour. Technol., 102, 8393-8402. DOI: 10.1016/j.biortech.2011.03.041.[PubMed][Crossref]
  • Lee D-Y., Li Y-Y., Noike T., 2010. Influence of solids retention time on continuous H2 production using membrane bioreactor. Int. J. Hydrogen Energy, 35, 52-60. DOI: 10.1016/j.ijhydene.2009.10.010.[Crossref]
  • Lee D-Y., Li Y-Y., Noike T., Cha G-C., 2008a. Behavior of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor. J. Membrane Sci., 322, 13-18. DOI: 10.1016/j.memsci.2008.04.031.[Crossref]
  • Lee H.S., Salerno M.B., Rittman B.E., 2008b. Thermodynamics evaluation on H2 production in glucose fermentation. Environ. Sci. Technol., 42, 2401-2407. DOI: 10.1021/es702610v.[PubMed][Crossref]
  • Lee J. Y., Miyahara T., Noike T., 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol., 77, 694-698. DOI: 10.1002/jctb.623.[Crossref]
  • Li J., Li B., Zhu G., Ren N., Bo L., He J., Gefu Z., 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy, 32, 3274-3283. DOI: 10.1016/j.ijhydene.2007.04.023.[Crossref]
  • Lin C-Y. Chang C-C., Hung C-H., 2008. Fermentative hydrogen production from starch using natural mixed cultures. Int. J. Hydrogen Energy, 33, 2445-2453. DOI: 10.1016/j.ijhydene.2008.02.069.[Crossref]
  • Logan B.E., 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85, 1665-1671. DOI: 10.1007/s00253-009-2378-9.[Crossref][PubMed]
  • Magnusson L., Islam R., Sparling R., Levin D., Cicek N., 2008. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energy, 33, 5398-5403. DOI: 10.1016/j.ijhydene.2008.06.018.[Crossref]
  • Massanet-Nicolau J., Guwy A., Dinsdale R., Premier G., Esteves S., 2010. Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging. Int. J. Hydrogen Energy, 35, 469-478. DOI: 10.1016/j.ijhydene.2009.10.076.[Crossref]
  • Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T., 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour. Technol. 73, 59-65. DOI: 10.1016/S0960-8524(99)00130-3.[Crossref]
  • Muraraka A., Dharmadi Y., Yazdani S. S., Gonzales R., 2008. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl. Environ. Microbiol. 74, 1124-1135.DOI: 10.1128/AEM.02192-07.[Crossref]
  • Ngo T.A., Nguyen T.H., Bui H.T.V., 2012. Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew. Energ., 37, 174-179. DOI: 10.1016/j.renene.2011.06.015.[Crossref]
  • Ni M., Leung D.Y.C., Leung M.K.H., 2007. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy, 32, 3238-3247. DOI: 10.1016/j.ijhydene.2007.04.038.[Crossref]
  • Ntaikou I., Antonopoulou G., Lyberatos G., 2010. Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste Biomass Valoriz., 1, 21-39. DOI: 10.1007/s12649-009-9001-2.[Crossref]
  • Ntaikou I., Kourmentza C., Koutrouli E.C., Stamatelatou K., Zampraka A., Kornaros M., Lyberatos G., 2009. Exploitation of olive mill wastewater for combined biohydrogen and biopolymer production. Bioresour.Technol. 100, 3724-3730. DOI: 10.1016/j.biortech.2008.12.001.[PubMed][Crossref]
  • Oh S.E., Iyer P., Bruns M.A., Logan B.E., 2004. Biological hydrogen production using a membrane bioreactor. Biotechnol. Bioeng., 87, 119-127. DOI: 10.1002/bit.20127.[Crossref]
  • Oh Y-K., Raj S.M., Jung G.Y., Park S., 2011. Current status of metabolic engineering of microorganisms for biohydrogen production. Bioresour. Technol. 102, 8357-8367. DOI: 10.1016/j.biortech.2011.04.054.[Crossref][PubMed]
  • Palo D.R., Dagle R.A., Holladay J.D., 2007. Methanol steam reforming for hydrogen production. Chem. Rev., 107, 3992-4021. DOI: 10.1021/cr050198b. Statistical Review of World Energy 2011.[Crossref]
  • Ren N.-Q., Guo W.-Q., Wang X.-J., Xiang W.-S., Liu B.-F., Wang X.-Z., Ding J., Chen Z.-B., 2008. Effect of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int. J.Hydrogen Energy, 33, 4318-4324. DOI: 10.1016/j.ijhydene.2008.06.003.[Crossref]
  • Seifert K., Waligorska M., Wojtowski M., Laniecki M., 2009. Hydrogen generation from glycerol in batchfermentation process. Int. J. Hydrogen Energy, 34, 3671-3678. DOI: 10.1016/j.ijhydene.2009.02.045.[Crossref]
  • Sharma Y., Li B., 2010. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuell cell (MFC). Int. J. Hydrogen Energy, 35, 3789-3797. DOI: 10.1016/j.ijhydene.2010.01.042.[Crossref]
  • Shin H.-S., Youn J.-H., Kim S.-H., 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy, 29, 1355-1363. DOI: 10.1016/j.ijhydene.2003.09.011.[Crossref]
  • Show K.-Y., Lee D.-J., Chang J.-S., 2011, Bioreactor and process design for biohydrogen production. Bioresour. Technol., 102, 8524-8533. DOI: 10.1016/j.biortech.2011.04.055.[PubMed][Crossref]
  • Stodolny M., Łaniecki M., 2009. Synthesis and characterization of mesoporous Ta2O5-TiO2 photocatalysts for water splitting. Catal. Today, 142, 314-319. DOI: 10.1016/j.cattod.2008.07.034.
  • Tanisho S., Kuromoto M., Kadokura N., 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy, 23, 559-563. DOI: 10.1016/S0360-3199(97)00117-1.[Crossref]
  • Ueno Y., Fukui H., Goto M., 2007. Operation of a two-sage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol., 41, 1413-1419. DOI: 10.1021/es062127f. van Ginkel S., Sung S., Lay J.-J. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726-4730. DOI: 10.1021/es001979r.[Crossref]
  • Valdez-Vazquez I., Rios-Leal E., Esparza-Garcia F., Cecchi F., Poggi-Varaldo H.M., 2005. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int. J. Hydrogen Energy, 30, 1383-1391. DOI: 10.1016/j.ijhydene.2004.09.016.[Crossref]
  • Valdez-Vazquez I., Rios-Leal E., Muñoz-Páez K.M., Carmona-Martínez A., Poggi-Varaldo H.M., 2006. Effect of inhibition treatment of inocula, and incubation temperature on batch H2 production from organic solid waste. Biotechnol. Bioeng. 95, 342-349. DOI: 10.1002/bit.20891.[Crossref]
  • Vijayaraghavan K., Ahmad D., 2006. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int. J. Hydrogen Energy, 31, 1284-1291. DOI: 10.1016/j.ijhydene.2005.12.002.[Crossref]
  • Waligórska M., Łaniecki M., 2005. The biomass conversion as a source of hydrogen. Przemysł Chemiczny, 84, 333-341 (in Polish).
  • Wang Y., Mu Y., Yu H.Q., 2007. Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int. J. Hydrogen Energy, 32, 1086-1094. DOI: 10.1016/j.ijhydene.2006.07.016.[Crossref]
  • Wang J., Wan W., 2009. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy, 34, 799-811. DOI: 10.1016/j.ijhydene.2008.11.015.[Crossref]
  • Yang H., Guo L., Liu F., 2010. Enhanced bio-hydrogen production from corncob by a two-step process : Darkand photo-fermentation. Bioresour. Technol., 101, 2049-2052. DOI: 10.1016/j.biortech.2009.10.078.[PubMed][Crossref]
  • Ye N.-F., Lü F., Shao L.-M., Godon J.-J., He P.-J., 2007. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J. Appl. Microbiol., 103, 1055-1065. DOI: 10.1111/j.1365-2672.2007.03321.x.[Crossref][PubMed]
  • Zhang Z.P., Show K.Y., Tay J.H., Liang D.T., Lee D.J., Jiang W.J., 2007. Rapid formation of hydrogenproducing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Biotechnol.Bioeng., 96, 1040-1050. DOI: 10.1002/bit.21243.[Crossref]
  • Zhang Z.P., Show K.Y., Tay J.H., David T.L., Lee D.J., 2008. Biohydrogen production with anaerobic fluidized bed reactors-A comparison of biofilm-based and granule-based systems. Int. J. Hydrogen Energy, 33, 1559- 1564. DOI: 10.1016/j.ijhydene.2007.09.048.[Crossref]
  • Zheng H., O'Sullivan C., Mereddy R., Zeng R.J., Duke M., Clarke W.P., 2010. Experimental and theoretical investigation of diffusion process in membrane anaerobic reactor for bio-hydrogen production. Int. J. HydrogenEnergy, 35, 5301-5311. DOI: 10.1016/j.ijhydene.2010.03.002.[Crossref]
  • Zong W., Yu R., Zhang P., Fan M., Zhou Z., 2009. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy, 33, 1458-1463. DOI: 10.1016/j.biombioe.2009.06.008.[Crossref]
  • Zhu H., Béland M., 2006. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy, 31, 1980-1988. DOI: 10.1016/j.ijhydene.2006.01.019.[Crossref]
  • Zhu Y., Yang S.T., 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J. Biotechnol., 110, 143-157. DOI: 10.1016/j.jbiotec.2004.02.006.[Crossref][PubMed]
  • ---

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.