Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 529-538

Article title

Encapsulation of Chondrocytes in Hydrogel Systems Effect of Chitosan Viscosity and Microcapsule Shape


Title variants

Languages of publication



Alginate - chitosan - alginate multilayer hydrogel encapsulation systems were investigated for encapsulation of chondrocytes. Hydrogel is crosslinked due to ionic interaction between cationic chitosan and anionic alginate, and additionally by calcium ions. Two types of chitosan with molecular weight were investigated. Cells were encapsulated in two shape microcapsules, microbeads with diameter size 300 - 400 and 500 - 600 μm and fibres with diameter 500 - 600 μm. The work provides a detailed examination of the impact of the microencapsulation process on the growth of cells. The viability of chondrocytes can be influenced by the size of produced microcapsules, while the shape of microcapsules has no important significance on cell viability. The applied encapsulation methods do not contain harmful stages and create conducive conditions for cell growth. A possible application area of the developed system is dressing and regeneration of damaged joint cartilage.









Physical description


1 - 12 - 2012
28 - 12 - 2012


  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland


  • Chandra R., Rustgi R., 1998. Biodegradable polymers. Prog. Polym. Sci., 23, 1273-1335. DOI: 10.1016/S0079-6700(97)00039-7.[WoS][Crossref]
  • Chia S.H., Homicz M.R., Schumacher B.L., Thonar E.J.-M.A., Masuda K., Sah R.L., Watson D., 2005.
  • Characterization of human nasal septal Chondrocytes cultured in alginate. J. Am. College Surg.,, 200, 691-704. DOI: 10.1016/j.jamcollsurg.2005.01.006.[Crossref]
  • Ciach T., 2007, Application of electro hydro dynamic atomization in drug delivery, J. Drug Deliv. Sci. Technol., 17, 367-375.
  • Constantinidis J., Rask J., Long R.C. Jr., Sambanis A., 1999. Effect of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 muse insulinoma cells. Biomaterials, 20, 2019-2027. DOI: 10.1016/S0142-9612(99)00104-0.[Crossref]
  • De S., Robinson D., 2003. Polymer relationships during preparation of chitosan - alginate and poly-l-lysine -alginate nanospheres. J. Control. Release, 89, 102-112 DOI: 10.1016/S0168-3659(03)00098-1.[Crossref]
  • Domm C., Schünke M., Christesen K., Kurz B., 2002. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr. Cartil., 10, 13-22. DOI: 10.1053/joca.2001.0477.[Crossref]
  • Gåserød O., Sannes A., Skjåk-Bræk G., 1999. Microencapsulation of alginate chitosan. II. A study of capsule stability and permeability. Biomaterials, 20, 773-783. DOI: 10.1016/S0142-9612(98)00230-0.[Crossref]
  • Gåserød O., Smidsrød O., Skjåk-Bræk G., 1999. Microcapsules of alginate chitosan - I: A quantative study of interaction between alginate and chitosan. Biomaterials, 19, 1815-1825. DOI: 10.1016/S0142-9612(98)00073-8.[Crossref]
  • Gombotz W.R, Wee S.F, 1999. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 31, 267-285. DOI: 10.1016/S0169-409X(97)00124-5.[Crossref][WoS]
  • Haque T., Chen H., Ouyang W., Martoni Ch., Lawuyi B., Urbańska A.M., Prakash S., 2005. In vitro study of alginate - chitosan microcapsules: An alternative to liver cell transplants for the treatment of liver failure. Biotechnol. Lett., 27, 317-322. DOI: 10.1007/s10529-005-0687-3.[Crossref]
  • Lim F., Sun A.M., 1980. Microencapsulated islets as bioartificial endocrine pancreas. Sci., 210, 908-910. DOI: 10.1126/science.6776628.[Crossref]
  • Moresi M., Bruno M., 2007. Characterisation of alginate gel using quasi-stati and dynamic methods. J. Food Eng., 82, 298-309. DOI: 10.1016/j.jfoodeng.2007.02.040.[Crossref][WoS]
  • Nafea E.H, Marson A., Poole-Warren L.A, Martens P.J., 2011. Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels. J. Control. Release, 154, 110-122. DOI: 10.1016/j.jconrel.2011.04.022.[WoS][Crossref]
  • Puppi D., Chiellini F., Piras A.M., Chiellini E., 2010. Polymeric materials for bone and cartilage repair. Prog.[WoS]
  • Polym. Sci., 35, 403-440. DOI: 10.1016/j.progpolymsci.2010.01.006.[Crossref]
  • Sittinger M., Braunling J., Kastenbauer E., Hammmer C., Gburmester ,Bujie J., 1997. Analysis of the proliferative potential of human nasal chondrocytes for the engineering of cartilage transplants. Laryngo-Rhino-Otol., 76, 96 -100. DOI: 10.1055/s-2007-997394.[Crossref]
  • Stabler C., Wilks K., Sambanis A., Constantinidis I., 2001. The effects of alginate composition on encapsulated βTC3 cells. Biomaterials, 22, 1301-1310. DOI: 10.1016/S0142-9612(00)00282-9.[Crossref]
  • Wang L., Shelton R.M., Cooper P.R., Lawson M., Triffitt J.T., Barralet J.E., 2003. Evaluation of sodium alginate for bone narrow cell tissue engineering. Biomaterials, 24, 3475-3481. DOI: 10.1016/S0142-9612(03)00167-4. I. Wasiak, T. Ciach, Chem. Process Eng., 2012, 33 (4), 529-538[Crossref]
  • ---

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.