Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 4 | 509-528

Article title

Life with Oxidative Stress


Title variants

Languages of publication



Incomplete oxygen reduction gives rise to reactive oxygen species (ROS). For a long time they have been considered unwelcome companions of aerobic metabolism. Organisms using oxygen developed several systems of ROS scavenging with enzymatic and non enzymatic antioxidants, which allow them control the cellular level of oxygen derived from free radicals. It is well established nowadays that ROS are not necessarily negative byproducts, but they also play an important role in cellular mechanisms. They are involved in many regular cellular processes in all aerobic organisms. When the antioxidant system is overcome and the balance between ROS production and scavenging is disrupted, oxidative stress occurs. It has been reported that oxidative stress may be linked to some human diseases and is also involved in biotic and abiotic stress response in plants.









Physical description


1 - 12 - 2012
28 - 12 - 2012


  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego St.12/14, Poznań, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego St.12/14, Poznań, Poland
  • Institute of Technical Biochemistry, Technical University of Łódź, B. Stefanowskiego St. 4/10, Łódź, Poland
  • Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego St.12/14, Poznań, Poland


  • Ahsan N., Lee D.G., Lee K.W., Alam, I., Lee, S.H., Bahk, J.D., Lee, B.H., 2008. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol. Bioch., 46, 1062-1070. DOI: 10.1016/j.plaphy.2008.07.002.[Crossref]
  • Alam. Z.I., Jenner. A., Daniel. S.E., Lees. A.J., Cairns. N., Marsden. C.D., Jenner. P., Halliwell. B., 1997. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem., 69, 1196-1203. DOI: 10.1046/j.1471-4159.1997.69031196.x.[Crossref]
  • Allan. A.C., Fluhr. R., 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 9, 1559-1572. DOI: 10.1105/tpc.9.9.1559.[PubMed][Crossref]
  • Apel. K., Hirt. H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399. DOI: 10.1146/annurev.arplant.55.031903.141701.[Crossref]
  • Asada K., 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601-639. DOI: 10.1146/annurev.arplant.50.1.601.[Crossref][PubMed]
  • Asada K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141, 391-396. DOI: 10.1104/pp.106.082040.[Crossref]
  • Asada K., Takahashi M., 1987. Production and scavenging of active oxygen in photosynthesis, In: Kyle D.J., Osmond C.B., Arntzen C. J. (Eds.), Photoinhibition. Elsevier, Amsterdam, 227-287.
  • Atwood C.S., Perry G., Zeng H., Kato Y., Jones W.D., Ling K.Q., Huang X., Moir R.D., Wang D., Sayre L.M., Smith M.A., Chen S.G., Bush A.I., 2004. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-β. Biochemistry, 43, 560-568. DOI: 10.1021/bi0358824.[Crossref][PubMed]
  • Avery S.V., 2011. Molecular targets of oxidative stress. Biochem. J., 434, 201-210. DOI: 10.1042/BJ20101695.[Crossref]
  • Aziz A., Larher F., 1998. Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brassica napus L. J. Plant Physiol., 153, 754-762. DOI: 10.1016/S0176-1617(98)80231-9.[Crossref]
  • Badawi G.H., Kawano N., Yamauchi Y., Shimada E., Sasaki R., Kubo A., Tanaka K., 2004. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol.Plant, 121, 231-238. DOI: 10.1111/j.0031-9317.2004.00308.x.[Crossref]
  • Baier M., Noctor G., Foyer C.H., Dietz K.J., 2000. Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol., 124, 823-832. DOI: 10.1104/pp.124.2.823. de Beer M.C., Zhao Z., Webb N.R., van der Westhuyzen D.R., de Villiers W.J., 2003. Lack of a direct role for macrosialin in oxidized LDL metabolism. J. Lipid Res., 44, 674-685. DOI: 10.1194/jlr.M200444-JLR200.
  • Biehler K., Fock H., 1996. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol., 112, 265-272. DOI: 10.1104/pp.112.1.265.[Crossref][PubMed]
  • Bolwell G.P., 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol., 2, 287-294. DOI: 10.1016/S1369-5266(99)80051-X.[PubMed][Crossref]
  • Bolwell G.P., Wojtaszek P., 1997. Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol. Mol. Plant P, 51, 347-366. DOI: 10.1006/pmpp.1997.0129.[Crossref]
  • Britt A.B., 1999. Molecular genetics of DNA repair in higher plants. Trends Plant Sci., 4, 20-25. DOI: 10.1016/S1360-1385(98)01355-7.[Crossref][PubMed]
  • Cadenas E., 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem., 58, 79-110. DOI: 10.1146/annurev.bi.58.070189.000455.[Crossref]
  • Cakmak I., Horst W.J., 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Planarum, 83, 463-468. DOI: 10.1111/j.1399-3054.1991.tb00121.x.[Crossref]
  • Cecarini V., Gee J., Fioretti E., Amici M., Angeletti M., Eleuteri A.M., Keller J.N., 2007. Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim. Biophys. Acta, 1773, 93-104. DOI: 10.1016/j.bbamcr.2006.08.039.[Crossref]
  • Chan A., Shea T.B., 2006. Supplementation with apple juice attenuates presenilin-1 overexpression during dietary and genetically-induced oxidative stress. J. Alzheimers Dis., 10, 353-358. DOI: 10.1177/1533317510363470.[Crossref]
  • Chang Y., Kong Q., Shan X., Tian G., Ilieva H., Cleveland D.W., Rothstein J.D., Borchelt D.R., Wong P.C., Lin C.L., 2008. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One, 3, e2849.
  • Chongpraditnun P., Mori S., Chino M., 1992. Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol., 33, 239-244.
  • Corpas F.J., Barroso J.B., del Rio L.A., 2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci., 6, 145-150. DOI: 10.1016/S1360-1385(01)01898-2.[PubMed][Crossref]
  • Damianaki A., Bakogeorgou E., Kampa M., Notas G., Hatzoglou A., Panagiotou S., Gemetzi C., Kouroumalis E., Martin P.M., Castanas E., 2000. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem., 78, 429-441. DOI: 10.1002/1097-4644(20000901)78:3<429::AID-JCB8>3.0.CO;2-M.[Crossref]
  • Dat J., Vandenabeele S., Vranova E., Van Montagu M., Inze D., Van Breusegem F., 2000a. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci., 57, 779-795. DOI: 10.1007/s000180050041.[Crossref][PubMed]
  • Dat J.F., Lopez-Delgado H., Foyer C.H., Scott I.M., 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol., 116, 1351-1357. DOI: 10.1104/pp.116.4.1351.[Crossref]
  • Dat J.F., Lopez-Delgado H., Foyer C.H., Scott I.M., 2000b. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol., 156, 659-665. DOI: 10.1016/S0176-1617(00)80228-X.[Crossref]
  • Doke N., 1997. The oxidative burst: roles in signal transduction and plant stress, In: Scandalios J.G. (Eds.), Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY. DOI: 10.1101/087969502.34.785.[Crossref]
  • Donahue J.L., Okpodu C.M., Cramer C.L., Grabau E.A., Alscher R.G., 1997. Responses of antioxidants to paraquat in pea leaves (relationships to resistance). Plant Physiol., 113, 249-257. DOI: 10.1104/pp.113.1.249.[Crossref][PubMed]
  • Douce R., Neuberger M., 1989. The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 371-414. DOI: 10.1146/annurev.pp.40.060189.002103.[Crossref]
  • Durner J., Shah J., Klessig D.F., 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci., 2, 266- 274. DOI: 10.1016/S1360-1385(97)86349-2.[Crossref]
  • Evans P., Halliwell B., 1999. Free radicals and hearing: Cause, consequence, and criteria. Ann. NY Acad. Sci., 884, 19-40. DOI: 10.1111/j.1749-6632.1999.tb08633.x.[Crossref]
  • Fadzilla N.M., Finch R.P., Burdon R.H., 1997. Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J. Exp. Botany, 48, 325-331. DOI: 10.1093/jxb/48.2.325.[Crossref]
  • Fang Y.Z., Yang S., Wu G., 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18, 872-879. DOI: 10.1016/S0899-9007(02)00916-4.[Crossref][PubMed]
  • Feild T.S., Nedbal L., Ort D.R., 1998. Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol., 116, 1209-1218. DOI: 10.1104/pp.116.4.1209.[Crossref]
  • Fernie A.R., Carrari F., Sweetlove L.J., 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol., 7, 254-261. DOI: 10.1016/j.pbi.2004.03.007.[PubMed][Crossref]
  • Flors C., Nonell S., 2006. Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc. Chem. Res., 39, 293-300. DOI: 10.1021/ar0402863.[Crossref][PubMed]
  • Fones H., Preston G.M., 2012. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol. Lett., 327, 1-8. DOI: 10.1111/j.1574-6968.2011.02449.x.[Crossref]
  • Foyer C.H., Descourvieres P., Kunert K.J., 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ., 17, 507-523. DOI: 10.1111/j.1365- 3040.1994.tb00146.x.[Crossref]
  • Foyer C.H., Lopez-Delgado H., Dat J.F., Scott I.M., 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant, 100, 241-254. DOI: 10.1111/j.1399- 3054.1997.tb04780.x.[Crossref]
  • Foyer C.H., Noctor G., 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant, 119, 355-364. DOI: 10.1034/j.1399-3054.2003.00223.x.[Crossref]
  • Galati G., O'Brien P.J., 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 37, 287-303. DOI: 10.1016/j.freeradbiomed.2004.04.034. De Gara L., de Pinto M.C., Tommasi F., 2003. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Bioch., 41, 863-870. DOI: 10.1016/S0981-9428(03)00135-9.[Crossref]
  • Ghezzi P., Bonetto V., 2003. Redox proteomics: Identification of oxidatively modified proteins. Proteomics, 3, 1145-1153. DOI: 10.1002/pmic.200300435.[PubMed][Crossref]
  • Gill S.S., Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, 909-930. DOI: 10.1016/j.plaphy.2010.08.016.[Crossref][PubMed]
  • Gogorcena Y., Iturbe-Ormaetxe I., Escuredo P.R., Becana M., 1995. Antioxidant defenses against activated oxygen in pea nodules subjected to water-stress. Plant Physiol., 108, 753-759. DOI: 10.1104/pp.108.2.753.[Crossref]
  • Gonzalez-Meler M.A., Ribas-Carbo M., Giles L., Siedow J.N., 1999. The effect of growth and measurement temperature on the activity of the alternative respiratory pathway. Plant Physiol., 120, 765-772. DOI: 10.1104/pp.120.3.765.[Crossref]
  • Goyal T., Mitra S., Khaidakov M., Wang X., Singla S., Ding Z., Liu S., Mehta J.L., 2012. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr. Atheroscler. Rep., 14, 150-159. DOI: 10.1007/s11883- 012-0228-1.[Crossref]
  • Grant J.J., Loake G.J., 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol., 124, 21-29. DOI: 10.1104/pp.124.1.21.[Crossref][PubMed]
  • Gray J., Janick-Buckner D., Buckner B., Close P.S., Johal G.S., 2002. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol., 130, 1894-1907. DOI: 10.1104/pp.008441.
  • Greene R., 2002. Oxidative stress and acclimation mechanisms in plants. Arabidopsis Book, 1, BioOne Publishers, Washington, 11-20. DOI: 10.1199/tab.0036.1.[Crossref]
  • Halliwell B., 1981. The biological effects of the superoxide radical and its products. Bull. Eur. Physiopathol. Respir., 17 Suppl, 21-29.[PubMed]
  • Halliwell B., 1999. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 31, 261-272. DOI: 10.1080/10715769900300841.[Crossref]
  • Halliwell B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 141, 312-322. DOI: 10.1104/pp.106.077073.[Crossref]
  • Halliwell B., Gutteridge J.M.C., 1989. Free radicals in biology and medicine. 2nd edition, Clarendon Press, Oxford University Press, Oxford, New York, xvi, 543 p.
  • Hammond-Kosack K.E., Jones J.D., 1996. Resistance gene-dependent plant defense responses. Plant Cell, 8, 1773-1791. DOI: 10.1105/tpc.8.10.1773.[Crossref]
  • Hernandez J.A., Corpas F.J., Gomez M., del Rio L.A., Sevilla F., 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant, 89, 103-110. DOI: 10.1111/j.1399-3054.1993.tb01792.x.[Crossref]
  • Hernandez J.A., Olmos E., Corpas F.J., Sevilla F., del Rio L.A., 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci., 105, 151-167. DOI: 10.1016/0168-9452(94)04047-8.[Crossref]
  • Hoefnagel M.H.N., Atkin O.K., Wiskich J.T., 1998. Interdependence between chloroplasts and mitochondria in the light and in the dark. Bochim. Biophys. Acta, 1336, 235-255. DOI: 10.1016/S0005-2728(98)00126-1.[Crossref]
  • Horling F., Lamkemeyer P., Konig J., Finkemeuer I., Kandlbinder A., Baier M., Dietz K.J., 2003. Divergent light-, ascorbate- and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol., 131. DOI: 10.1104/pp.010017.[Crossref]
  • Hu J. P., Aguirre M., Peto C., Alonso J., Ecker J., Chory J., 2002. A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Sci., 297, 405-409. DOI: 10.1126/science.1073633.[Crossref]
  • Huang A.H.C., Trelease R.N., Moore T.S., 1983. Plant peroxisomes. Academic Press, New York, xiii, 252 p.
  • Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C., Becana M., 1998. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol., 116, 173-181. DOI: 10.1104/pp.116.1.173.[Crossref]
  • Jain M., Bhalla-Sarin N., 2001. Glyphosate-induced increase in glutathione S-transferase activity and glutathione content in groundnut (Arachis hypogaea L.). Pestic. Biochem. Phys., 69, 143-152. DOI: 10.1006/pest.2000.2535.[Crossref]
  • Janero D.R., 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med., 9, 515-540. DOI: 10.1016/0891-5849(90)90131-2.[Crossref]
  • Kamal-Eldin A., Appelqvist L.A., 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31, 671-701. DOI: 10.1007/BF02522884.[Crossref]
  • Kampfenkel K., Van Montagu M., Inze D., 1995. Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol., 107, 725-735. DOI: 10.1104/pp.107.3.725.[PubMed][Crossref]
  • Keller T., Damude H.G., Werner D., Doerner P., Dixon R.A., Lamb C., 1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell, 10, 255-266. DOI: 10.1105/tpc.10.2.255.
  • Kennedy T.A., Liebler D.C., 1992. Peroxyl radical scavenging by beta-carotene in lipid bilayers. Effect of oxygen partial pressure. J. Biol. Chem., 267, 4658-4663.
  • Knekt P., Jarvinen R., Seppanen R., Rissanen A., Aromaa A., Heinonen O.P., Albanes D., Heinonen M., Pukkala E., Teppo L., 1991. Dietary antioxidants and the risk of lung cancer. Am. J. Epidemiol., 134, 471-479.
  • Kochian L.V., 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 237-260. DOI: 10.1146/annurev.pp.46.060195.001321.[Crossref]
  • Kojo S., 2004. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr. Med. Chem., 11, 1041-1064. DOI: 10.2174/0929867043455567.[PubMed][Crossref]
  • Kong Q., Lin C.L., 2010. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol. Life Sci., 67, 1817-1829. DOI: 10.1007/s00018-010-0277-y.[Crossref]
  • Kovacic P., Pozos R.S., 2006. Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res. Part C: EmbryoToday: Rev., 78, 333-344. DOI: 10.1002/bdrc.20083.[Crossref]
  • Kraus T.E., Fletcher R.A., 1994. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved. Plant Cell Physiol., 35, 45-52.
  • Kurepa J., Herouart D., Van Montagu M., Inze D., 1997. Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol., 38, 463-470.[Crossref][PubMed]
  • Leprince O., Hendry G.A.F., Atherton N.M., 1994. Free radical processes induced by desiccation in germinating maize: the relationship with respiration and loss of desiccation tolerance. Proc. R. Soc. Edinb. B, 102, 211-218. DOI: 10.1017/S0269727000014135.[Crossref]
  • Li Z., Wu J., Deleo C.J., 2006. RNA damage and surveillance under oxidative stress. IUBMB Life, 58, 581-588. DOI: 10.1080/15216540600946456.[Crossref][PubMed]
  • Liu Y., Ren D., Pike S., Pallardy S., Gassmann W., Zhang S., 2007. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J., 51, 941-954. DOI: 10.1111/j.1365-313X.2007.03191.x.[PubMed][Crossref]
  • Lobreaux S., Thoiron S., Briat J.F., 1995. Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant J., 8, 443-449. DOI: 10.1046/j.1365-313X.1995.08030443.x.[Crossref]
  • Lopez-Huertas E., Corpas F.J., Sandalio L.M., del Rio L.A., 1999. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J., 337 ( Pt 3), 531-536. DOI: 10.1042/0264-6021:3370531.[Crossref]
  • Magder S., 2006. Reactive oxygen species: toxic molecules or spark of life? Crit. Care, 10, 208. DOI: 10.1186/cc3992.[Crossref][PubMed]
  • Marra M., Sordelli I.M., Lombardi A., Lamberti M., Tarantino L., Giudice A., Stiuso P., Abbruzzese A., Sperlongano R., Accardo M., Agresti M., Caraglia M., Sperlongano P., 2011. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J. Transl. Med., 9, 171. DOI: 10.1186/1479-5876-9-171.[Crossref]
  • Martinet W., de Meyer G.R., Herman A.G., Kockx M.M., 2004. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur. J. Clin. Invest., 34, 323-327. DOI: 10.1111/j.1365-2362.2004.01343.x.[Crossref]
  • Martinet W., De Meyer G.R., Herman A.G., Kockx M.M., 2005. Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells. Biotechno.l Lett., 27, 1157-1163. DOI: 10.1007/s10529-005-0007-y.[Crossref]
  • Martinet W., Knaapen M.W., De Meyer G.R., Herman A.G., Kockx M.M., 2002. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation, 106, 927-932. DOI: 10.1161/01.CIR.0000026393.47805.21.[Crossref][PubMed]
  • Maxwell D.P., Wang Y., McIntosh L., 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA, 96, 8271-8276. DOI: 10.1073/pnas.96.14.8271.[Crossref]
  • McDowell J.M., Dangl J.L., 2000. Signal transduction in the plant immune response. Trends Biochem. Sci., 25, 79-82. DOI: 10.1016/S0968-0004(99)01532-7.[PubMed][Crossref]
  • Mehler A.H., 1951. Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys., 34, 339-351. DOI: 10.1016/0003-9861(51)90012-4.[Crossref]
  • Mishra N.P., Fatma T., Singhal G.S., 1995. Development of antioxidative defense system of wheat seedlings in response to high light. Physiol. Plant, 95, 77-82. DOI: 10.1111/j.1399-3054.1995.tb00811.x.[Crossref]
  • Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405-410. DOI: 10.1016/S1360-1385(02)02312-9.[PubMed][Crossref]
  • Mittler R., Vanderauwera S., Gollery M., Van Breusegem F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498. DOI: 10.1016/j.tplants.2004.08.009.[Crossref][PubMed]
  • Mittler R., Zilinskas B.A., 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J. Biol. Chem., 267, 21802-21807.
  • Mittler R., Zilinskas B.A., 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J., 5, 397-405. DOI: 10.1111/j.1365-313X.1994.00397.x.[Crossref][PubMed]
  • Moller I.M., 2001. PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561-591. DOI: 10.1146/annurev.arplant.52.1.561.[PubMed][Crossref]
  • Moller I.M., Jensen P.E., Hansson A., 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol., 58, 459-481. DOI: 10.1146/annurev.arplant.58.032806.103946.[PubMed][Crossref]
  • Moran J.F., Becana M., Iturbe-Ormaetxe I., Frechilla S., Klucas R.V., Aparicio Tejo P., 1994. Drought induces oxidative stress in pea plants. Planta, 194, 346-352. DOI: 10.1007/BF00197534.[Crossref]
  • Mullineaux P.M., Rausch T., 2005. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth. Res., 86, 459-474. DOI: 10.1007/s11120-005-8811-8.[Crossref][PubMed]
  • Mur L.A., Kenton P., Lloyd A.J., Ougham H., Prats E., 2008. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot., 59, 501-520. DOI: 10.1093/jxb/erm239.[Crossref]
  • Murphy T.M., Huerta A.J., 1990. Hydrogen peroxide formation in cultured rose cells in response to UV-C radiation. Physiol. Plant, 78, 247-253. DOI: 10.1111/j.1399-3054.1990.tb02088.x.[Crossref]
  • Noctor G., De Paepe R., Foyer C.H., 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci, 12, 125-134. DOI: 10.1016/j.tplants.2007.01.005.[Crossref][PubMed]
  • Noctor G., Gomez L., Vanacker H., Foyer C.H., 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot., 53, 1283-1304. DOI: 10.1093/jexbot/53.372.1283.[Crossref]
  • Noctor G., Veljovic-Jovanovic S., Foyer C.H., 2000. Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Phil. Trans. R. Soc. B, 355, 1465-1475. DOI: 10.1098/rstb.2000.0707.[Crossref]
  • Nunomura A., Hofer T., Moreira P.I., Castellani R.J., Smith M.A., Perry G., 2009. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol., 118, 151-166. DOI: 10.1007/s00401-009- 0508-1.[PubMed][Crossref]
  • Nunomura A., Perry G., Pappolla M.A., Wade R., Hirai K., Chiba S., Smith M.A., 1999. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J. Neurosci., 19, 1959-1964.
  • O'Kane D., Gill V., Boyd P., Burdon R., 1996. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta, 198, 371-377. DOI: 10.1007/BF00620053.[Crossref]
  • Okuda T., Matsuda Y., Yamanaka A., Sagisaka S., 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol., 97, 1265-1267. DOI: 10.1104/pp.97.3.1265.[PubMed][Crossref]
  • Olsson M., 1995. Alterations in lipid composition, lipid peroxidation and anti-oxidative protection during senescence in drought stressed plants and non-drought stressed plants of Pisum sativum. Plant Physiol. Bioch., 33, 547-553.
  • Omran R.G., 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiol., 65, 407-408. DOI: 10.1104/pp.65.2.407.[Crossref][PubMed]
  • Orozco-Cardenas M., Ryan C.A., 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sc.i USA, 96, 6553-6557. DOI: 10.1073/pnas.96.11.6553.[Crossref]
  • Pastore D., Laus M.N., Di Fonzo N., Passarella S., 2002. Reactive oxygen species inhibit the succinate oxidationsupported generation of membrane potential in wheat mitochondria. FEBS Lett, 516, 15-19. DOI: 10.1016/S0014-5793(02)02454-7.[Crossref]
  • Prasad T.K., Anderson M.D., Martin B.A., Stewart C.R., 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6, 65-74. DOI: 10.1105/tpc.6.1.65.[Crossref][PubMed]
  • Prasad T.K., Anderson M.D., Stewart C.R., 1995. Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Plant Physiol., 108, 1597-1605. DOI: 10.1104/pp.108.4.1597.[Crossref][PubMed]
  • Pucciariello C., Banti V., Perata P., 2012. ROS signaling as common element in low oxygen and heat stresses. Plant Physiol. Biochem., 59, 3-10. DOI: 10.1016/j.plaphy.2012.02.016.[Crossref][PubMed]
  • Puntarulo S., Sanchez R.A., Boveris A., 1988. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol., 86, 626-630. DOI: 10.1104/pp.86.2.626. Quan L.J., Zhang B., Shi W.W., Li H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol., 50, 2-18. DOI: 10.1111/j.1744-7909.2007.00599.x.[Crossref]
  • Raghavendra A.S., Padmasree K., 2003. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci., 8, 546-553. DOI: 10.1016/j.tplants.2003.09.015.[Crossref][PubMed]
  • Rasmusson A.G., Soole K.L., Elthon T.E., 2004. Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol., 55, 23-39. DOI: 10.1146/annurev.arplant.55.031903.141720.[PubMed][Crossref]
  • Ren D.T., Yang H.P., Zhang S.Q., 2002. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem., 277, 559-565. DOI: 10.1074/jbc.M109495200.[Crossref]
  • Rhoads D.M., Umbach A.L., Subbaiah C.C., Siedow J.N., 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol., 141, 357-366. DOI: 10.1104/pp.106.079129.[Crossref]
  • Rice-Evans C.A., Sampson J., Bramley P.M., Holloway D.E., 1997. Why do we expect carotenoids to be antioxidants in vivo? Free Radic. Res., 26, 381-398. DOI: 10.3109/10715769709097818.[Crossref]
  • Richards K.D., Schott E.J., Sharma Y.K., Davis K.R., Gardner R.C., 1998. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol., 116, 409-418. DOI: 10.1104/pp.116.1.409. del Rio L.A., Palma J.M., Sandalio L.M., Corpas F.J., Pastori G.M., Bueno P., Lopez-Huertas E., 1996. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans., 24, 434- 438. DOI: 10.1042/bst0240434. del Rio L.A., Sandalio L.M., Corpas F.J., Lopez-Huertas E., Palma J.M., Pastori G.M., 1998. Activated oxygenmediated metabolic functions of leaf peroxisomes. Physiol. Plant, 104, 673-680. DOI: 10.1034/j.1399- 3054.1998.1040422.x. del Rio L.A., Sandalio L.M., Palma J.M., BuenoP., Corpas F.J., 1992. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic. Biol. Med., 13, 557-580. DOI: 10.1016/0891-5849(92)90150-F.[Crossref]
  • Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodriguez-Serrano M., del Rio L.A., Palma J.M., 2006. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol., 170, 43-52. DOI: 10.1111/j.1469-8137.2005.01643.x.[Crossref]
  • Romero D.M., Rios de Molina M.C., Juarez A.B., 2011. Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ. Saf., 74, 741-747. DOI: 10.1016/j.ecoenv.2010.10.034.[Crossref]
  • Ros Barcelo A., 1997. Lignification in plant cell walls. Int. Rev. Cytol., 176, 87-132. DOI: 10.1016/S0074- 7696(08)61609-5.[Crossref]
  • Roxas V.P., Lodhi S.A., Garrett D.K., Mahan J.R., Allen R.D., 2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol., 41, 1229-1234. DOI: 10.1093/pcp/pcd051.[Crossref][PubMed]
  • Sandalio L.M., Fernandez V.M., Ruperez F.L., del Rio L.A., 1988. Superoxide free radicals are produced in glyoxysomes. Plant Physiol., 87, 1-4. DOI: 10.1104/pp.87.1.1.[Crossref][PubMed]
  • Sandmann G., Boger P., 1980. Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol., 66, 797-800. DOI: 10.1104/pp.66.5.797.De Santis A., Landi P., Genchi G., 1999. Changes of mitochondrial properties in maize seedlings associated withselection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adeninenucleotide translocase activities. Plant Physiol., 119, 743-754. DOI: 10.1104/pp.119.2.743.[Crossref]
  • Scarpeci T.E., Zanor M. I., Carrillo N., Mueller-Roeber B., Valle E.M., 2008. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol.Biol., 66, 361-378. DOI: 10.1007/s11103-007-9274-4.[Crossref]
  • Schonbrunn E., Eschenburg S., Shuttleworth W.A., Schloss J.V., Amrhein N., Evans J.N.S., Kabsch W., 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyvuvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA, 98, 1376-1380. DOI: 10.1073/pnas.98.4.1376.
  • Schopfer P., 1994. Histochemical demonstration and localization of H2O2 in organs of higher-plants by tissue printing on nitrocellulose paper. Plant Physiol, 104, 1269-1275. DOI: 10.1104/pp.104.4.1269.[Crossref]
  • Schulze-Osthoff K., Bauer M.K., Vogt M., Wesselborg S., 1997. Oxidative stress and signal transduction. Int. J. Vitam. Nutr. Res., 67, 336-342.
  • Schwanz P., Picon C., Vivin P., Dreyer E., Guehl J.M., Polle A., 1996. Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol., 110, 393-402. DOI:10.1104/pp.110.2.393.
  • Seifried H.E., Anderson D.E., Fisher E.I., Milner J.A., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem., 18, 567-579. DOI: 10.1016/j.jnutbio.2006.10.007.[Crossref]
  • Sergiev I.G., Alexieva V.S., Ivanov S.V., Moskova I.I., Karanov E.N., 2006. The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic. Biochem. Phys., 85, 139-146. DOI: 10.1016/j.pestbp.2006.01.001.[Crossref]
  • Sgherri C.L.M., Pinzino C., NavariIzzo F., 1996. Sunflower seedlings subjected to increasing stress by water deficit: Changes in O2 - production related to the composition of thylakoid membranes. Physiol. Plant, 96, 446- 452. DOI: 10.1111/j.1399-3054.1996.tb00457.x.
  • Shan X., Lin C.L., 2006. Quantification of oxidized RNAs in Alzheimer's disease. Neurobiol. Aging., 27, 657- 662. DOI: 10.1016/j.neurobiolaging.2005.03.022.[Crossref][PubMed]
  • Shan X., Tashiro H., Lin C.L., 2003. The identification and characterization of oxidized RNAs in Alzheimer's disease. J. Neurosci., 23, 4913-4921. DOI:10.2144/000113801.[Crossref]
  • Sies H., 1991. Oxidative stress: from basic research to clinical application. Am. J. Med., 91, 31S-38S. DOI: 10.1016/0002-9343(91)90281-2.[Crossref]
  • Sigler K., Chaloupka J., Brozmanova J., Stadler N., Hofer M., 1999. Oxidative stress in microorganisms - I. Microbial vs. higher cells- damage and defenses in relation to cell aging and death. Folia Microbiol (Praha), 44, 587-624.[Crossref][PubMed]
  • Smirnoff N., 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol., 125, 27-58. DOI: 10.1111/j.1469-8137.1993.tb03863.x.[Crossref]
  • Smirnoff N., 1998. Plant resistance to environmental stress. Curr. Opin. Biotechno.l, 9, 214-219. DOI: 10.1016/S0958-1669(98)80118-3.[Crossref]
  • Smirnoff N., 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3, 229-235.[PubMed]
  • Stieger P.A., Feller U., 1997. Degradation of stromal proteins in pea (Pisum sativum L.) chloroplasts under oxidising conditions. J. Plant Physiol., 151, 556-562. DOI: 10.1016/S0176-1617(97)80230-1.[Crossref]
  • Strid A., 1993. Alteration in expression of defense genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiol., 34, 949-953.
  • Sweetlove L.J., Foyer C.H. , 2004. Roles for reactive oxygen species and antioxidants in plant mitochondria. Kluwer Academic Press, Dordrecht, The Netherlands.
  • Takahashi M., Asada K., 1988. Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophys., 267, 714-722. DOI: 10.1016/0003-9861(88)90080-X.[Crossref]
  • Takahashi N., Kozai D., Kobayashi R., Ebert M., Mori Y., 2011. Roles of TRPM2 in oxidative stress. Cell Calcium, 50, 279-287. DOI: 10.1016/j.ceca.2011.04.006.[PubMed]
  • Temple M.D., Perrone G.G., Dawes I.W., 2005. Complex cellular responses to reactive oxygen species. Trends Cell Biol., 15, 319-326. DOI: 10.1016/j.tcb.2005.04.003.[Crossref][PubMed]
  • Tsang E.W., Bowler C., Herouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inze D., 1991. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell, 3, 783-792. DOI: 10.1105/tpc.3.8.783.[Crossref][PubMed]
  • Turrens J.F., 2003. Mitochondrial formation of reactive oxygen species. J. Physiol., 552, 335-344. DOI: 10.1113/jphysiol.2003.049478.[Crossref]
  • Tuteja N., Singh M.B., Misra M.K., Bhalla P.L., Tuteja R., 2001. Molecular mechanisms of DNA damage and repair: progress in plants. Crit. Rev. Biochem. Mol. Biol., 36, 337-397. DOI: 10.1080/20014091074219.[PubMed][Crossref]
  • Uotila M., Gullner G., Komives T., 1995. Induction of glutathione S-transferase activity and glutathione level in plants exposed to glyphosate. Physiol. Plant, 93, 689-694. DOI: 10.1111/j.1399-3054.1995.tb05118.x.[Crossref]
  • Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39, 44-84. DOI: 10.1016/j.biocel.2006.07.001.[Crossref][PubMed]
  • Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160, 1-40. DOI: 10.1016/j.cbi.2005.12.009.[Crossref]
  • Verbruggen N., Hermans C., 2008. Proline accumulation in plants: a review. Amino Acids, 35, 753-759. DOI: 10.1007/s00726-008-0061-6. De Vos C.H., Vonk M.J., Vooijs R., Schat H., 1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol., 98, 853-858. DOI: 10.1104/pp.98.3.853.[Crossref]
  • Vurusaner B., Poli G., Basaga H., 2012. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic. Biol. Med., 52, 7-18. DOI: 10.1016/j.freeradbiomed.2011.09.035.[Crossref]
  • Watanabe T., Sakai S., 1998. Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Planta, 206, 570-576. DOI: 10.1007/s004250050434.[Crossref]
  • Weckx J.E.J., Clijsters H.M.M., 1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physio.l Plant, 96, 506-512. DOI:10.1111/j.1399-3054.1996.tb00465.x.[Crossref]
  • Weckx J.E.J., Clijsters H.M.M., 1997. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem., 35, 405-410.
  • White E., Shannon J.S., Patterson R.E., 1997. Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol. Biomarkers Prev., 6, 769-774.[PubMed]
  • Willekens H., Van Camp W., Van Montagu M., Inze D., Langebartels C., Sandermann H., 1994. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotianaplumbaginifolia L. Plant Physiol., 106, 1007-1014. DOI: 10.1104/pp.106.3.1007.[Crossref][PubMed]
  • Wiseman H., Halliwell B., 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J., 313, 17-29.
  • Zawia N.H., Lahiri D.K., Cardozo-Pelaez F., 2009. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med., 46, 1241-1249. DOI: 10.1016/j.freeradbiomed.2009.02.006.[Crossref]
  • Zhu D.H., Scandalios J.G., 1994. Differential accumulation of manganese-superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiol., 106, 173-178. DOI: 10.1104/pp.106.1.173.[PubMed][Crossref]
  • ---

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.