Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 3 | 445-461

Article title

Triple-layer based control strategy for molten carbonate fuel cell – hybrid system

Content

Title variants

Languages of publication

EN

Abstracts

EN
Based on mathematical modelling and numerical simulations, a control strategy for a Molten Carbonate Fuel Cell Hybrid System (MCFC-HS) is presented. Adequate maps of performances with three independent parameters are shown. The independent parameters are as follows: stack current, fuel mass flow and compressor outlet pressure. Those parameters can be controlled by external load, fuel valve and turbine-compressor shaft speed, respectively. The control system is purposed to meet many constraints: e.g. stack temperature, steam-to-carbon ratio, compressor surge limitation, etc. The aim is to achieve maximum efficiency of power generated within these constraints. Governing equations of MCFC-HS modelling are given. An operational line of the MCFC-GT system is presented which fulfils several constraints (temperature difference, cell temperature, etc.) The system is able to achieve efficiency of more than 62% even in part-load operation.

Publisher

Year

Volume

33

Issue

3

Pages

445-461

Physical description

Dates

published
1 - 10 - 2012
received
accepted
online
31 - 10 - 2012

Contributors

  • Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland

References

  • Arato E., Bosio B., Costa P., Parodi F., 2001. Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells. J. Power Sources, 102, 74-81. DOI: 10.1016/S0378-7753(01)00797-2.[Crossref]
  • Bedont P., Grillo O., Massardo A.F., 2002. Off-design performance analysis of a hybrid system based on an existing molten fuel cell stack. ASME Conference Proceedings, 2, Turbo Expo 2002, Parts A and B, Paper no. GT2002-30115, 387-395. DOI: 10.1115/GT2002-30115.[Crossref]
  • Chan S.H., Ho H.K., Tian Y., 2002. Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant. J. Power Sources.109, 111-120. DOI: 10.1016/S0378-7753(02)00051-4.[Crossref][WoS]
  • Chan S.H., Ho H.K., Tian Y., 2003. Multi-level modeling of SOFC-gas turbine hybrid system. Int. J. Hydrogen Energy, 28, 889-900. DOI: 10.1016/S0360-3199(02)00160-X.[Crossref]
  • Chen Q., Weng Y., Zhu X., Weng S., 2006. Design and partial load performance of a hybrid system based on a Molten Carbonate Fuel Cell and a gas turbine. Fuel Cells, 6, 460-465. DOI: 10.1002/fuce.200500228.[Crossref]
  • Costamagna P., Magistri L.,F. Massardo A., 2001. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. J. Power Sources, 96, 352-368. DOI: 10.1016/S0378-7753(00)00668-6.[Crossref]
  • Freeh J.E., Steffen C.J., Larosiliere L.M., 2005. Off-design performance analysis of a solid-oxide fuel cell/gas turbine hybrid for auxiliary aerospace Power. Third International Conference on Fuel Cell Science Engineering and Technology. Ypsilanti, Michigan, USA, May 23-25, 2005.
  • He W., 1998. Dynamic model for molten carbonate fuel-cell power-generation systems. Energy Convert. Mgmt, 39, 775-783. DOI: 10.1016/S0196-8904(97)10022-X.[Crossref]
  • HYSYS. Plant 2.1 user guide, Hyprotech Corporation, 1999.
  • Kang B.S., Koh J-H., Lim H.C., 2001. Experimental study on the dynamic characteristics of kW-scale molten carbonate fuel cell systems. J. Power Sources, 94, 51-62. DOI: 10.1016/S0378-7753(00)00606-6.[Crossref]
  • Kimjima S., Kasagi N., 2002, Performance evaluation of gas turbine-fuel cell hybrid micro generation system. ASME Conference Proceedings, 2, Turbo Expo 2002, Parts A and B, Paper no. GT2002-30109, 333-340. DOI: 10.1115/GT2002-30109.[Crossref]
  • Mangold M., Sheng M., Heidebrecht P., Kienle A., Sundmacher K., 2004. Development of physical models for the process control of a molten carbonate fuel cell system. Chem. Eng. Sci., 59, DOI:4847-4852. DOI: 10.1016/j.ces.2004.08.019.[Crossref]
  • Marsano F., Magistri L., Massardo A.F., 2004. Ejector performance influence on a solid oxide fuel cell anodic recirculation system. J. Power Sources, 129, 216-228. DOI: 10.1016/j.jpowsour.2003.11.034.[Crossref]
  • Milewski J., Miller A., 2006. Influences of the type and thickness of electrolyte on solid oxide fuel cell hybrid system performance. J. Fuel Cell Sci. Technol., 3, 396-402. DOI: 10.1115/1.2349519.[Crossref]
  • Milewski J., Miller A., Salacinski J., 2007. Off-design analysis of SOFC hybrid system. Int. J. Hydrogen Energy, 32, 687-698. DOI: 10.1016/j.ijhydene.2006.08.007.[Crossref]
  • Milewski J., Badyda K., Misztal Z., Wołowicz M., 2011a. Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application. Rynek Energii, 90, 118-123.
  • Milewski J., Badyda K., Misztal Z., Wołowicz M., 2011b. Operational characteristics of 36kW PEMFC-CHP Unit. Rynek Energii, 92, 150-156.
  • Miller A., J. Milewski, J. Salacinski, 2007. Off-design operation of fuel cell - gas turbine hybrid system. 7th European Conference on Turbomachinery, Athens, Greece, 5-9 March 2007.
  • Palsson J., Selimovic A., 2001, Design and off-design predictions of a combined SOFC and gas turbine system, Proceedings of ASME TURBO EXPO. New Orleans, USA, June 4-7, 2001.
  • Sheng M., Mangold M., Kienle A., 2006. A strategy for the spatial temperature control of a molten carbonate fuel cell system. J. Power Sources, 162, 1213-1219. DOI: 10.1016/j.jpowsour.2006.08.025[Crossref]
  • Stiller C., 2006. Design, operation and control modeling of SOFC/GT Hybrid Systems. PhD dissertation, Norwegian University of Science and Technology.
  • Stiller C., Thorud B., Bolland O., 2005. Safe dynamic operation of a simple SOFC/GT hybrid system. ASME Turbo Expo 2005: Power for Land, Sea and Air. Reno-Tahoe, Nevada, USA, June 6-9, 2005, GT2005-68481.
  • Stiller C., Thorud B., Bolland O., Kandepu R., Imsland L., 2006. Control strategy for a solid oxide fuel cell and gas turbine hybrid system. J. Power Sources, 158, 303-315. DOI: 10.1016/j.jpowsour.2005.09.010.[WoS][Crossref]
  • Thorstensen B., 2001. A parametric study of fuel cell system efficiency under full and part load operation, J. Power Sources, 92, 9-16. DOI: 10.1016/S0378-7753(00)00497-3.[Crossref]
  • Trzcinska Z., Miller A., Lewandowski J., 1997. Performance characteristic of reaction type turbine stage groups. Proceedings of the 2nd European Conference on Turbomachinery - Fluid Dynamics and Thermodynamics. Antwerpen, Belgium, March 5-7, 1997.
  • Van herle J., Maréchal F., Leuenberger S., Membrez Y., Bucheli O., Favrat D., 2004. Process flow model of solid oxide fuel cell system supplied with sewage biogas. J. Power Sources, 131, 127-141. DOI: 10.1016/j.jpowsour.2004.01.013.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0038-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.