Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 3 | 323-333

Article title

Rheological scaling properties of starch solutions in dimethylsulfoxide

Content

Title variants

Languages of publication

EN

Abstracts

EN
The possibility of scaling viscoelastic properties of starch solutions in relation to biopolymer concentration was presented in this study. An application of this empirical method enabled to widen the observation horizon of viscoelastic properties. It was also determined that the scope of its applicability is limited by amylose content in the solution. In high amylose solutions, for which up to 40% (w/w) concentration was the highest one obtained, calibration caused the formation of master curve in the widest frequency range. Determined values of scaling coefficients aC changed exponentially in starch concentration function in the solution. For waxy starch solutions of maximum concentration equal to 20% (w/w), scaling did not significantly widen the observation window. Based on master curves constructed in such way, continuous relaxation spectra H(λ) were determined using Tikhonov regularisation method. Their structure indicates advantageous of viscous elements in the process of viscoelastic phenomena formation.

Publisher

Year

Volume

33

Issue

3

Pages

323-333

Physical description

Dates

published
1 - 10 - 2012
received
accepted
online
31 - 10 - 2012

Contributors

  • Agricultural University of Krakow, Faculty of Food Technology, Balicka 122, 30-149 Kraków, Poland
  • Agricultural University of Krakow, Faculty of Food Technology, Balicka 122, 30-149 Kraków, Poland
author
  • Agricultural University of Krakow, Faculty of Food Technology, Balicka 122, 30-149 Kraków, Poland
  • Institute of Chemical Engineering of Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

References

  • Aberle T., Burchard W., Vorwerg W., Radosta S., 1994. Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources. Starch, 46, 329-335. DOI: 10.1002/star.19940460903.[Crossref]
  • Aberle T., Burchard W. 1997. Starches in semidilute aqueous solution. Starch, 49, 215-224. DOI: 10.1002/star.19970490602.[Crossref]
  • Bello-Perez L.A., Roger P., Baud B., Colonna P., 1998. Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J. Cereal Sci., 27, 267-278. DOI: 10.1006/jcrs.1998.0186.[Crossref]
  • BeMiller J.N. Whistler R.L., 2009. Starch: Chemistry and technology. Academic Press, Amsterdam.
  • Cao X., Sessa D.J., Wolf W.J., Willett J.L., 2000. Static and dynamic solution properties of corn amylose in n,ndimethylacetamide with 3 LiCl. Macromolecules, 33, 3314-3323. DOI: 10.1021/ma9918248.[Crossref]
  • Chamberlain E.K., Rao M.A., 1999. Rheological properties of acid converted waxy maize starches in water and 90% DMSO/ 10% water. Carbohydrate Polymers, 40, 251-260. DOI: 10.1016/S0144-8617(99)00060-0.[Crossref]
  • Crini G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polymer Sci., 30, 38-70. DOI: 10.1016/j.progpolymsci.2004.11.002.[Crossref]
  • de Vasconcelos C.L., de Azevedo F.G., Pereira M.R., Fonseca J.L.C., 2000. Viscosity temperature-concentration relationship for starch-DMSO-water solutions. Carbohydrate Polymers, 41, 181-184. DOI: 10.1016/S0144-8617(99)00078-8.[Crossref]
  • Dewar R. J., Joyce M. J., 2006. Time-dependent rheology of starch thickeners and the clinical implications for dysphagia therapy. Dysphagia, 21, 264-269. DOI: 10.1007/s00455-006-9050-7.[Crossref][PubMed]
  • Dzuy Nguyen Q., Jensen C.T.B., Kristensen P.G., 1998. Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J., 70, 165-171. DOI: 10.1016/S1385-8947(98)00081-3.[Crossref]
  • Eliasson A.C., 2004. Starch in food: Structure, function and applications. Woodhead Publishing, Cambrigde.
  • Ferry J.D., 1980. Viscoelastic Properties of Polymers. Wiley, New York.
  • Gilbert G.A., Spragg S.P., 1964. Iodimetric determination of amylase, In: Whistler R. L. (Ed.), Methods in Carbohydrate Chemistry. Vol. 4. Starch. Academic Press, New York, 168-169.
  • Honerkamp J., Weese J., 1993. A note on estimating mastercurves. Rheologica Acta, 32, 57-64. DOI: 10.1007/BF00396677.[Crossref]
  • Honerkamp J., Weese J., 1989. Determination of the relaxation spectrum by a regularization method. Macromolecules, 22, 4372-4377. DOI: 10.1021/ma00201a036.[Crossref]
  • Honerkamp J., Weese J. 1990. Tikhonovs regularization method for ill-posed problems. A comparison of different methods for the determination of the regularization parameter. Continuum Mech. Thermodyn., 2, 17-30. DOI: 10.1007/BF01170953.[Crossref]
  • Jordan R.C., Brant D.A. 1980. Unperturbed dimensions of amylose in binary water/dimethyl sulfoxide mixtures. Macromolecules, 13, 491-499. DOI: 10.1021/ma60075a006.[Crossref]
  • Kapoor B., Bhattacharya M., 2000. Dynamic and extensional properties of starch in aqueous dimethylsulfoxide. Carbohydrate Polymers, 42, 323-335. DOI: 10.1016/S0144-8617(99)00188-5.[Crossref]
  • Kapoor B., Bhattacharya M., 2001. Steady shear and transient properties of starch in dimethylsulfoxide. Carbohydrate Polymers, 44, 217-231. DOI: 10.1016/S0144-8617(00)00218-6.[Crossref]
  • Lukasiewicz M., Ptaszek P., Achramowicz B., Ptaszek A., Bednarz Sz., Kaznowska A., 2007. Oxidative polimerisation of aniline hydrochloride in high viscosity carbohydrate gels. 11th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-11), Basel, Switzerland.
  • Mao R., Tang J., Swanson B.G., 2000. Relaxation time spectrum of hydrogels by CONTIN analysis. J. Food Sci., 65, 374-381. DOI: 10.1111/j.1365-2621.2000.tb16010.x.[Crossref]
  • Morris D.L., 1948. Quantitative determination of carbohydrates with Dreywood’s Anthrone reagent. Science, 107, 254-255.
  • Praznik W., Smidth S., Ebermann R., 1983. Gelchromatographische Untersuchungen an hydrolytisch abgebauten Amylosen. Starch/Staerke, 35, 58-61 (in German).
  • Ptaszek P., Grzesik M., 2007. Viscoelastic properties of maize starch and guar gum gels. Journal of Food Engineering, 82, 227-237. DOI: 10.1016/j.jfoodeng.2007.02.013.[Crossref]
  • Ptaszek A., Berski W., Ptaszek P., Witczak T., Repelewicz U., Grzesik M., 2009. Viscoelastic properties of waxy maize starch and selected non-starch hydrocolloids gels. Carbohydrate Polymers, 76, 567-577. DOI: 10.1016/j.carbpol.2008.11.023.[WoS][Crossref]
  • Radosta S., Haberer M., Vorwerg W., 2001. Molecular characteristics of amylose and starch in dimethyl sulfooxide. Biomacromolecules, 2, 970-978. DOI: 10.1021/bm0100662.[Crossref]
  • Ring S.G., L’Anson K.J., Morris V.J., 1985. Static and dynamic light scattering studies of amylose solutions. Macromolecules, 18, 182-188. DOI: 10.1021/ma00144a013.[Crossref]
  • Sashiwa H., Aiba S., 2004. Chemically modified chitin and chitosan as biomaterials. Prog. Polymer Sci., 29, 887-908. DOI: 10.1016/j.progpolymsci.2004.04.001.[Crossref]
  • Smallwood I.M., 1996. Handbook of Organic Solvent Properties, Wiley, New York.
  • Sodhi N.S., Sasaki T., Lu Z.-H., Kohyama K., 2010. Phenomenological viscoelasticity of some rice starch gels. Food Hydrocolloids, 24, 512-517. DOI: 10.1016/j.foodhyd.2009.12.009.[WoS][Crossref]
  • Tan H., Tam K.C., Jenkins R.D., 2000. Relaxation spectra and viscoelastic behavior of a model hydrophobically modified alkali-soluble emulsion (HASE) polymer in salt/SDS solutions. J. Colloid Interface Sci., 231, 52-58. DOI: 10.1006/jcis.2000.7098.[Crossref]
  • Tarrega A., Velez-Ruiz J.F., Costell E., 2005. Influence of milk on the rheological Behavior of cross-linkedwaxy maize and tapioca starch dispersions. Food Research International, 38 759-768. DOI: 10.1016/j.foodres.2005.03.002.[Crossref]
  • Tecante A., Doublier J. L., 1999. Steady flow and viscoelastic behavior of crosslinked waxy corn starch - κ- carrageenan pastes and gels. Carbohydrate Polymers, 40, 221-231. DOI: 10.1016/S0144-8617(99)00057-0.[Crossref]
  • Tikhonov A.N., Goncharsky A.V., Stiepanov V.V., Yagola A.G., 1995. Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht.
  • Tschoegl N.W., 1989. The Phenomenological Theory of Linear Viscoelastic Behavior Springer. Berlin.
  • Weese J., Friedrich C., 1994. Relaxation time spectra in rheology: Calculation and examples. Appl. Rheol., 6, 69-76. DOI: 10.3933/ApplRheol-4-69.[Crossref]
  • Yarema K.J. (Ed.), 2005. Handbook of carbohydrate engineering. CRC Press , Boca Raton.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0029-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.