Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 1 | 141-151

Article title

The Fractional derivative rheological model and the linear viscoelastic behavior of hydrocolloids


Title variants

Languages of publication



This study was aimed at evaluating the possibility to use the Friedrich-Braun fractional derivative rheological model to assess the viscoelastic properties of xanthan gum with rice starch and sweet potato starch. The Friedrich-Braun fractional derivative rheological model allows to describe viscoelastic properties comprehensively, starting from the behaviour characteristic of purely viscous fluids to the behaviour corresponding to elastic solids. The Friedrich-Braun fractional derivative rheological model has one more virtue which distinguishes it from other models, it allows to determine the relationship between stress and strain and the impact of each of them on viscoelastic properties on the tested material. An analysis of the data described using the Friedrich-Braun fractional derivative rheological model allows to state that all the tested mixtures of starch with xanthan gum form macromolecular gels exhibiting behaviour typical of viscoelastic quasi-solid bodies. The Friedrich-Braun fractional derivative rheological model and 8 rheological parameters of this model allow to determine changes in the structure of the examined starch - xanthan gum mixtures. Similarly important is the possibility to find out the trend and changes going on in this structure as well as their causes.









Physical description


1 - 3 - 2012
6 - 3 - 2012


  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland


  • Choi H. M., Yoo B., 2009. Steady and dynamic shear rheology of sweet potato starch-xanthan gum mixtures. Food Chem., 116, 638-643. DOI: 10.1016/j.foodchem.2009.02.076.[Crossref][WoS]
  • Christianson D. D., 1982. Hydrocolloid interactions with starches. In: Lineback D. R., Inglet G. E. (Eds.), Food carbohydrates. AVI Publishing Co., Westport, 399-419.
  • Clark A. H., Ross-Murphy S. B., 1987. Structural and mechanical properties of biopolymer gels. Adv. Polymer Sci., 83, 157-192. DOI: 10.1007/BFb0023330.[Crossref]
  • Dinzart F., Lipiński P., 2009. Improved five-parameter fractional derivative model for elastomers. Arch. Mech., 61, 459-474.
  • Doublier J. L., 1981. Rheological studies on starch. Flow behaviour of wheat starch pastes. Starch, 33, 415-420. DOI: 10.1002/star.19810331205.[Crossref]
  • Ferry F. D., 1980. Viscoelastic properties of polymers. 3rd edition, Wiley, New York.
  • Fijan R., Šostar-Turk S., Lapasin R., 2007. Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing. Carbohydrate Polymers, 68, 708-717. DOI: 10.1016/j.carbpol.2006.08.006.[Crossref][WoS]
  • Fijan R., Basile M., Šostar-Turk S., Žagar E., Žigon M., Lapasin R., 2009. A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing. Carbohydrate Polymers, 76, 8-16. DOI: 10.1016/j.carbpol.2008.09.027.[Crossref]
  • Friedrich Chr., 1991. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta, 30, 151-158. DOI: 10.1007/BF01134604.[Crossref]
  • Friedrich Chr., 1993. Mechanical stress relaxation in polymers: Fractional integral model versus fractional differential model. J. Non-Newt. Fluid Mech., 46, 307-314. DOI: 10.1016/0377-0257(93)85052-C.[Crossref]
  • Friedrich Chr., Braun H., 1992. Generalized Cole-Cole behavior and its rheological relevance. Rheol. Acta, 31, 309-322. DOI: 10.1007/BF00418328.[Crossref]
  • Friedrich Chr., Braun H., 1994. Linear viscoelastic behavior of complex polymeric materials: A fractional mode representation. Colloid Polym. Sci., 272, 1536-1546. DOI: 10.1007/BF00664721.[Crossref]
  • Friedrich Chr., Heymann L., 1988. Extension of a model for crosslinking polymer at the gel point. J. Rheol., 32, 235-241. DOI: 10.1122/1.549971.[Crossref]
  • Kilbas A. A., Srivastava H. M., J. J. Trujillo, 2006. Theory and applications of fractional differential equations. Elsevier, North-Holland.
  • Kim C., Yoo B., 2006. Rheological properties of rice starch-xanthan gum mixtures. J. Food Eng., 75, 120-128. DOI: 10.1016/j.jfoodeng.2005.04.002.[Crossref]
  • Koroteeva D.A, Kiseleva V. I., Krivandin A. V., Shatalova O. V., Błaszczak W., Bertoft E., Piyachomkwan K., Yuryev V. P., 2007. Structural and thermodynamic properties of rice starches with different genetic background: Part 2. Defectiveness of different supramolecular structures in starch granules. Inter. J. Biol. Macromol., 41, 534-547. DOI: 10.1016/j.ijbiomac.2007.07.005.[WoS][Crossref]
  • Mandala I. G., Palogou E. D., 2003. Effect of preparation conditions and starch-xanthan concentration on gelation process of potato starch systems. Inter. J. Food Prop., 6, 311-328. DOI: 10.1081/JFP-120017818.[Crossref]
  • Mweta D. A., 2009. Physicochemical, functional and structural properties of native Malawian cocoyam and sweetpotato starches. PhD Thesis, The University of The Three State Bloemfontein, South Africa.
  • Myszka K., Czaczyk K., 2004. The role of microbial exo-polysaccharides in food technology. Food. Science. Technology. Quality, 4, 18-29.
  • Oblonšek M., Šostar-Turk S., Lapasin R., 2003. Rheological studies of concentrated guar gum. Rheol. Acta, 42, 491-499. DOI: 10.1007/s00397-003-0304-0.[Crossref]
  • Rupenthal I. D., 2008. Ocular delivery of antisense oligonucleotides using colloidal carriers: Improving the wound repair after corneal surgery. PhD Thesis, The University of Auckland, New Zealand.
  • Siddig M. A., Radiman S., Muniandy S. V., 2004. Rheological modelling of wormlike micelles systems using fractional viscoelastic model. Suranaree J. Sci. Technol., 11, 132-137.
  • Sikora M., Kowalski S., 2003. Interactions between starch from different botanical sources and hydrocolloids. Food. Science. Technology. Quality, 34 Supl., 40-55 (in Polish).
  • Sikora M., Krystyjan M., 2008. Interactions between starch from different botanical sources and non-starchy hydrocolloids. Food. Science. Technology. Quality, 56, 23-40 (in Polish).
  • Sittikijyothin W. Torres D., Gonçalves M. P. 2005. Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydrate Polymers, 59, 339-350. DOI: 10.1016/j.carbpol.2004.10.005.[Crossref]
  • Zener C., 1948. Elasticity and anelasticity of metals, The University of Chicago Press, Chicago.
  • Zupančič A., Žumer M., 2001. Viscoelastic properties of hydrophilic polymers in aqueous dispersions. Acta Chim. Slov., 48, 469-486.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.