Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 1 | 131-140

Article title

Efficiency of acetone-butanol-ethanol-water system separation by pervaporation

Content

Title variants

Languages of publication

EN

Abstracts

EN
The article focuses on multicomponent system separation with the use of an innovative membrane-based technique i.e. pervaporation. Pervaporation is a membrane technique for separation of liquid mixtures on solid nonporous membranes. Pervaporation is used in this study to separate a quaternary system acetone-butanol-ethanol-water. Such a system may be derived from ABE fermentation process, and the resulting product, biobutanol, is a potential biofuel and may be used in internal combustion engines.Experiments in the study involving concentration of butanol by pervaporation were performed using PERVAP 4060 flat-sheet commercial membrane. To describe the PV process a semi-empirical approach was used. As a result of experiments and calculations permeance coefficients were obtained. Separation and permeance factors were calculated to assess the efficiency of the system separation. Beforehand, activity coefficients were determined for all the components of the mixture with the NRTL equation. Separation coefficients for all the components differed depending on process parameters: concentration, feed flow rate and process temperature. The study confirmed the separation effect of the quaternary system. The most interesting results were obtained for the concentration of butanol. Pervaporation allows to concentrate butanol over 10 times. The permeance coefficient reached for butanol an average value of 7.06·10-3 in comparison with the results for ethanol 3.24·10-2 and acetone 1.83·10-2 [kmol(m2h)-1]. The temperature change from 50 to 70°C led to an increased permeance factor and there was no apparent effect on it in the feed flow rate. Due to the hydrophobicity of the membrane water fluxes in the quaternary system were negative.

Publisher

Year

Volume

33

Issue

1

Pages

131-140

Physical description

Dates

published
1 - 3 - 2012
online
6 - 3 - 2012

Contributors

  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland

References

  • Böddeker W. K., 1990. Terminology in pervaporation. J. Membr. Sci., 51, 259-272. DOI: 10.1016/S0376-7388(00)80350-6.[Crossref]
  • Cojocaru C., Khayet M., Zakrzewska-Trznadel G., Jaworska A., 2009. Modelling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach. J. Hazzardous Mat., 167, 52-63. DOI:10.1016/j.jhazmat.2008.12.078.[Crossref]
  • Christi Y., 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol., 26, 3, 126-131 doi:10.1016/j.tibtech.2007.12.002.[Crossref][WoS]
  • Doong S. J., Ho W. S., Mastondrea R. P., 1995. Prediction of flux and selectivity in pervaporation through a membrane. J. Membr. Sci., 107, 129 - 146. DOI: 10.1016/0376-7388(95)00109-P.[Crossref]
  • Drioli E., Giorno L., 2009. Membrane Operations: Innovative separations and transformations, Wiley-VCH. DOI: 10.1002/9783527626779.[Crossref]
  • Dürre P., 2008. Fermentative butanol production. Annals New York Acad. Sci., 1125, 353-362. DOI: 10.1196/annals.1419.009.[Crossref]
  • El-Zanati E., Abdel-Hakim E., El-Ardi O., Fahmy M., 2006. Modeling and simulation of butanol separation from aqueous solutions using pervaporation. J. Membr. Sci., 280, 278-283. DOI: 10.1016/j.memsci.2006.01.029.[Crossref]
  • Fortman J. L., Chhabra S., Mukhopadhyay A., Chou H., Lee T. S., Steen E., Keasling J. D., 2008. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol., 26, 7, 375-381. DOI: 10.1016/j.tibtech.2008.03.008.[WoS][Crossref]
  • Fouad E. A., Feng X., 2008. Use of pervaporation to separate butanol from dilute aqueous solutions: Effects of operating conditions and concentration polarization. J. Membr. Sci. 323, 428-435. DOI: 10.1016/j.memsci.2008.06.054.[Crossref]
  • Garcia V., Pongracz E., Muurinen E., Keiski R. L., 2009a. Recovery of n-butanol from salt containing solutions by pervaporation. Desalination, 241, 201-211. DOI: 10.1016/j.desal.2007.12.051.[Crossref][WoS]
  • Garcia V., Landaburu-Aguirre J., Pongracz E., Peramaki P., Keiski R. L., 2009b. Dehydration of water/dichloromethane/n-butanol mixtures by pervaporation; optimisation and modeling by response surface methodology. J. Membr. Sci., 338, 111-118. DOI: 10.1016/j.memsci.2009.04.040.[Crossref][WoS]
  • Huang J., Meagher M. M., 2001. Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentaion broth Rusing thin-film silicalite-filled silicone composite membranes. J. Membr. Sci., 192, 231-242. DOI: 10.1016/S0376-7388(01)00507-5.[Crossref]
  • Khayet M., Cojocaru C., Zakrzewska-Trznadel G., 2008. Studies on pervaporation separation of acetone, acetonitrile and etanol from aqueous solutions. Sep. Purif. Technol., 63, 303-310. DOI: 10.1016/j.seppur.2008.05.016.[Crossref][WoS]
  • Kujawski W., 1996. Membrane selectivity in pervaporation. Sep. Sci. Technol., 31, 1555-1571. DOI: 10.1080/01496399608001413.[Crossref]
  • Lipnizki F., Field W. R., Ten P. K., 1999. Pervaporation-based hybrid process: A review of process design, applications and economics. J. Membr. Sci., 153, 183 -210. DOI: 10.1016/S0376-7388(98)00253-1.[Crossref]
  • Liu F., Liu L., Feng X., 2005. Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solution by pervaporation. Sep. Pur. Technol., 42, 273-282. DOI:10.1016/j.seppur.2004.08.005.[Crossref]
  • Narębska A., 1997. Membrany i membranowe techniki rozdziału. Wydawnictwo UMK, Toruń.
  • Neel J., 1991. Introduction to perwaporation, In: Huang R. Y. M. (Ed.), Pervaporation Separation Processes. Elsevier, Amsterdam, 1-109.
  • Qureshi N., Maddox I., 1995. Continuous production of acetone-butanol-ethanol using immobilized cell of Clostridium acertobutylicum and integration with product removal by liquid-liquid extraction. J. Ferment. Bioeng. 80, 185-189. DOI: 10.1016/0922-338X(95)93217-8.[Crossref]
  • Qureshi N., Blaschek H. P., 1999. Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenergy, 17, 175-184. DOI: 10.1016/S0961-9534(99)00030-6.[Crossref]
  • Rapin J. L., 1989. The Betheniville Pervaporation Unit - the first large - scale production plant for the dehydration of ethanol, in: Bakish R. (Ed.), Proc. 3rd Int. Conf. on Pervaporation Processes in Chemical Industry, Bakish Materials Corp., Englewood, 364 - 378.
  • Regulation of the Minister of Economy, 27.12.2007 on the calorific value of various bio-components and liquid fuels. Dziennik Ustaw 2008 nr 3 poz. 12 (in Polish).
  • Rautenbach R., 1996. Membrane processes, Scientific and Technical Publishing, Warszawa.
  • Schaetzel P., Vauclair C., Luo G., Nguyen Q. T., 2001. The solution-diffusion model: Order of magnitude calculation of coupling between the fluxes in pervaporation. J. Membr. Sci., 191, 103-108. DOI: 10.1016/S0376-7388(01)00457-4.[Crossref]
  • Schaetzel P., Catherine Vauclair C., Nguyen Q. T., Bouzerar R., 2004. A simplified solution-diffusion theory in pervaporation: the total solvent volume fraction model. J. Membr. Sci., 244, 117-127. DOI: 10.1016/j.memsci.2004.06.060.[Crossref]
  • Stachecka A., 2005. Empirical and the semi-empirical models of alcohols dehydration by pervaporation, PhD thesis, Technical University of Lodz, Poland.
  • Trifunovic O., Trägårdh G., 2002. Transport of diluted volatile organic compounds through pervaporation membranes. Desalination, 149, 1-2. DOI: 10.1016/S0011-9164(02)00682-3.[Crossref]
  • Wackett L. P., 2008. Biomass to fuels via microbial transformations. Current Opinion Chem. Biology 12, 187-193. DOI: 10.1016/j.cbpa.2008.01.025.[Crossref]
  • Wijmans J. G., 2004. The role of permeant molar volume in the solution-diffusion model transport equations. J. Membr. Sci., 237, 39-50. DOI: 10.1016/j.memsci.2004.02.028.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0012-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.