Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 1 | 117-129

Article title

Analysis of the breakage rate function for selected process parameters in quartzite milling

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents the results of studies on quartzite milling in a ball mill. The milling was conducted in a batch system, for diversified compositions of balls. The milling product was subjected to granulometrical, morphological and strength analyses. On the basis of the developed Reid's theory and using the Austin-Gardner equation, a form of the function circumscribing the specific rate of comminution of selected size fractions was determined. The values of the breakage rate function bi, j for the mill's apparatus conditions were determined. The impact was investigated for a variable number of grinding media contact points on the values of specific rate S and the values of the breakage rate function bi, j. Furthermore, the values of coefficients occurring in the equations circumscribing the specific rate of milling S and breakage parameter bi, j were determined.

Publisher

Year

Volume

33

Issue

1

Pages

117-129

Physical description

Dates

published
1 - 3 - 2012
online
6 - 3 - 2012

Contributors

  • Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, Poland

References

  • Austin L. G., Bhatia V. K., 1973. Note on conversion of discrete size interval values of breakage parameters S and B to point values and vice versa. Powder Technol., 7, 107-110. DOI: 10.1016/0032-5910(73)80013-0.[Crossref]
  • Austin L. G., 1999. A discussion of Equations for the analysis of batch grinding data. Powder Technol., 106, 71-77. DOI: 10.1016/S0032-5910(99)00047-9.[Crossref]
  • Austin L. G., 2004. The effect of damage on breakage kinetics. Powder Technol., 143-144, 151-159. DOI:10.1016/j.powtec.2004.04.048.[Crossref]
  • Bond F. C., 1952. The third theory of comminution. Min. Eng. Trans. AIME, 193, 484-494.
  • Brach I., 1962. The theories of grinding minerals, Przegląd Mechaniczny, 14, 421-426, (In Polish).
  • Erasmus L. D., Eyre D., Everson R. C., 1994. Numerical treatment of the population balance equation using a spline-galerkin method. Comput. Chem. Eng., 18, 775-783. DOI:10.1016/0098-1354(94)E0007-A.[Crossref]
  • Hukki, R. T., 1961. Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. Trans. AIME, 220, 403-408.
  • Kapur P. C., 1971. The energy-size reduction relationships in comminution of solids. Chem. Eng. Sci., 26, 11-16. DOI:10.1016/0009-2509(71)86076-1.[Crossref]
  • Kapur P. C., 1972. Self-preserving size spectra of comminuted particles. Chem. Eng. Sci. 27, 425-431.; 10.1016/0009-2509(72)85079-6.
  • Kick F., 1885. The law of proportional resistance and its application. Arthur Felix Verlag, Leipzig (in German).
  • Lynch A. J., 1977. Mineral crushing and grinding circuits. Developments in mineral processing. Elsevier, 1, 22, 33.
  • Mort P. R., 2003. A multi-scale approach to modeling and simulation of particle formation and handling processes. Proc. 4th International Conference for conveying and handling of particulate solids 2, Budapest, Hungary 23-27 August 2003, 12.98-12.104.
  • Olejnik T. P., 2011. Grinding kinetics of granite considering morphology and physical properties of grains, Physicochem. Probl. Miner. Process., 48, 149-158.
  • Reid K. J., 1965. A solution to the batch grinding equation. Chem. Eng. Sci., 20, 953-963. DOI:10.1016/0009-2509(65)80093-8.[Crossref]
  • Rittinger P. R., 1867. Treatment of the customer handbook, Bergmaschinentechnik Deutscher Verlag, Berlin (in German).
  • Schubert H., 1968. Treatment of solid mineral fuels. Vol. 1. VEB Verlag, Leipzig, 39-41 (in German).
  • Sokołowski E. M., 1992. Generalized hypothesis of grinding and method for determining material properties, Proc. 9th Symposium on the Theory and Practice of the Processing Processes. Gliwice. 131-143, (in Polish).
  • Stamboliadis E. Th., 2002. A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials. Minerals Eng., 15, 707-713. DOI: 10.1016/S0892-6875(02)00185-1.[Crossref]
  • Tavares L. M., King R. P., 1998. Single-particle fracture under impact loading. Int. J. Miner. Process., 54, 1-28. DOI:10.1016/S0301-7516(98)00005-2.[Crossref]
  • Walker D. R., Shaw M. C., 1954. A physical explanation of the empirical laws of comminution, AIME Trans. 199, 313-320.
  • Zingg T., Contribution to the gravel analysis. Schweiz. Mineral. Petrogr. Mitt., 1935, 15, 39-140 (in German).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-012-0011-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.