EN
Lean mixture burning leads to a decrease in the temperature of the combustion process and it is one of the methods of limiting nitric oxide emissions. It also increases engine efficiency. An effective method to correct lean mixture combustion can be a two-stage system of stratified mixture combustion in an engine with a prechamber. This article presents the results of laboratory research on an SI engine (spark ignition) with a two-stage combustion system with a cylinder powered by gasoline and a prechamber powered by propane-butane gas LPG (liquefied petroleum gas). The results were compared to the results of research on a conventional engine with a one-stage combustion process. The test engine fuel mixture stratification method, with a two-stage combustion system in the engine with a prechamber, allowed to burn a lean mixture with an average excess air factor equal to 2.0 and thus led to lower emissions of nitrogen oxides in the exhaust of the engine. The test engine with a conventional, single-stage combustion process allowed to properly burn air-fuel mixtures of excess air factors λ not exceeding 1.5. If the value λ > 1.5, the non-repeatability factor COVLi increases, and the engine efficiency decreases, which makes it virtually impossible for the engine to operate. The engine with a two-stage combustion process, working with λ = 2.0, the Qin/Qtot = 2.5%, reduced the NOx content in the exhaust gases to a level of about 1.14 g/kWh. This value is significantly lower than the value obtained in a conventional engine, which worked at λ = 1.3 with comparable non-repeatability of successive cycles (about 3%) and a similar indicated efficiency (about 34%), was characterised by the emissions of NOx in the exhaust equal to 26.26 g/kWh.