Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 4 | 423-433
Article title

Modelling of pollutants concentrations from the biomass combustion process

Title variants
Languages of publication
This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.

Physical description
1 - 12 - 2011
15 - 2 - 2012
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science & Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science & Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Materials Processing Technology and Applied Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Adamczuk M., Radomiak H., 2010. The use of computer programs for the numerical modelling of combustion process and gas dynamics in heating furnaces. Archivum Combustionis, 30, 4, 451-458.
  • Adamczuk M., Szecówka L., Radomiak H., 2009. Applied of numerical methods to environmental protection. Archiwum Spalania, 9, 13-23 (in Polish).
  • Barneto A.G., Carmona J.A., Conesa Ferrer J.A., Diaz Blanco M.J., 2010. Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production. Fuel, 89, 462-473. DOI: 10.1016/j.fuel.2009.09.024.[Crossref]
  • Burcat A., 2011. Thermodynamic database BURCAT.THR. Retrieved January 2, 2012 from
  • Dupont C., Chen L., Cances J., Commandre J.M., Cuoci A., Pierucci S., 2009. Biomass pyrolysis: Kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J. Anal. Appl. Pyrolysis, 85, 260-267. DOI:10.1016/j.jaap.2008.11.034.[Crossref][WoS]
  • Liu H., Gibbs B.M., 2002. Modelling of NO and N2O emission from biomass-fired circulating fluidized bed combustors. Fuel, 81, 271-280. DOI: 10.1016/S0016-2361(01)00170-3.[Crossref]
  • Ma L., Jones J.M., Pourkashanian M., Williams A., 2007. Modelling the combustion of of pulverized biomass in an industrial combustion test furnace. Fuel, 86, 1956-1965. DOI:10.1016/j.fuel.2006.12.019.[Crossref]
  • Miller J.A, Bowman C.T., 1989. Mechanism and modelling of nitroagen chemistry in combustion. Prog. Energy Combust. Sci., 15, 287-338. DOI: 10.1016/0360-1285(89)90017-8.[Crossref]
  • Nimmo W., Daood S.S., Gibbs B.M., 2010. The effect of O2 enrichment on NOx formation in biomass co-fired pulverised coal combustion. Fuel, 89, 2945-2952. DOI: 10.1016/j.fuel.2009.12.004.[Crossref][WoS]
  • Pisupati S.V., Bhalla S., 2008. Numerical modelling of NOx reduction using pyrolysis products from biomass-based materials. Biomass Bioenergy, 32, 146-154. DOI:10.1016/j.biombioe.2007.07.010.[Crossref]
  • Venturini P., Borello D., Iossa C., Lentini D., Rispoli F., 2010. Modelling of mutiphase combustion and deposit formation in biomass-fed furnace. Energy, 35, 3008-3021. DOI:10.1016/[Crossref]
  • Wei X., Schnell U., Hein K.R.G., 2005. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation. Fuel, 84, 841-848. DOI:10.1016/j.fuel.2004.11.022.[Crossref]
  • Westbrook C.K., Dryer F.L., 1981. Chemical kinetics and modelling of combustion process. Eighteenth International Symposium on Combustion, 18, 1, 749-767.
  • Wilk M., Magdziarz A., 2010. Ozone effects on the emission of pollutants coming from natural gas combustion. Polish J. Environ. Stud., 19, 1331-1336.
  • Wilk M., Magdziarz A., Kuźnia M, 2010. The influence of oxygen addition into air combustion on natural gas combustion process. Rynek Energii, 5, 32-36 (in Polish).
  • Wilk R.K., Sarnowski T., 2009. Emissions of CO, SO2,NOx and ash during co-combustion of biomass in a 25 kW boiler, Chem. Process Eng., 30, 279-289.
  • Williams A., Pourkashanian M., Jones J.M., 2001. Combustion of pulverised coal and biomass. Prog. Energy Combust. Sci., 27, 587-610. DOI: 10.1016/S0360-1285(01)00004-1.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.