PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 4 | 333-349
Article title

Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model

Content
Title variants
Languages of publication
EN
Abstracts
EN
In many practical situations fluids are normally blended with additives (viscosity index improvers, viscosity thickeners, viscosity thinners) due to which they show pseudoplastic and dilatant nature which can be modelled as cubic stress model (Rabinowitsch model). The cubic stress model for pseudoplastic fluids is adopted because Wada and Hayashi have shown that the theoretical results with this model are in good agreement with the experimental results. The present theoretical analysis is to investigate the pseudoplastic effect along with the effect of rotational inertia on the pressure distribution, frictional torque and fluid flow rate of externally pressurised flow in narrow clearance between two curvilinear surfaces of revolution. The expression for pressure has been derived using energy integral approach. To analyse and discuss the effects of pseudoplasticity and fluid inertia on the pressure distribution, fluid flow rate and frictional torque, the examples of externally pressurised flow in the clearance between parallel disks and concentric spherical surfaces have been considered.
Publisher
Year
Volume
32
Issue
4
Pages
333-349
Physical description
Dates
published
1 - 12 - 2011
online
15 - 2 - 2012
References
  • Bourging P., Gay B., 1984. Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-newtonian lubricant. ASME J. Tribol., 106, 285-290. DOI:10.1115/1.3260906.[Crossref]
  • Cameron A., 1996. Basic Lubrication Theory, Ellis Harwood, Chichester, 1996.
  • Coombs J. A., Dowson D., 1964. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing. Proc. Inst. Mech. Engrs., London, 179 (Paper 12), 96-108. DOI:10.1243/PIME_CONF_1964_179_270_02.[Crossref]
  • Cross M.M., 1965. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci., 20, 417-437. DOI:10.1016/0095-8522(65)90022-X.[Crossref]
  • Elkouh A. F., 1967. Inertia effect in laminar radial flow between parallel plates. Int. J. Mech. Sci., Pergamon Press Ltd., 9, 253-255. DOI:10.1016/0020-7403(67)90020-3.[Crossref]
  • Giannikos C., Buckholz R. H., 1988. Elastic bearings lubricated with non-Newtonian power law fluids - a boundary element approach. Tribology Trans., 31, 105-112. DOI:10.1080/10402008808981805.[Crossref]
  • Hanks R. W., 1979. The axial flow of yield-pseudoplastic fluids in a concentric annulus. Ind. Eng. Chem. Process Des. Dev., 18, 488-493. DOI: 10.1021/i260071a024.[Crossref]
  • Hashimoto H., Wada S., 1986. The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudoplastic fluids. ASME J. Tribol., 108, 282-287. DOI:10.1115/1.3261177.[Crossref]
  • Hsu Y. C., Saibel E., 1965. Slider bearing performance with a non-newtonian lubricant. ASLE Trans., 8, 191-194.[Crossref]
  • Hung C. R., 2009. Effects of non-newtonian cubic-stress flow on the characteristics of squeeze film between parallel plates. Education Specialization in 97P-009, 97, 87-97 (97P-009, 87-97).
  • Jurczak P., Walicka A., Walicki E., Michalski D., 2006. Influence of rheological parameters on the mechanical parameters of curvilinear thrust bearing with one porous wall lubricated by a couple stress fluid. Int. J. Appl. Mech. Eng., 11, 221-233.
  • Kapur V. K., Verma K., 1973. Energy integral approach for hydrostatic thrust bearing. Japanese J. App. Phy., 12, 1070. DOI: 10.1143/JJAP.12.1070.[Crossref]
  • Khonsari M. M., Brewe D. E., 1989. On the performance of finite journal bearings lubricated with micropolar fluids. Tribology Trans., 32, 155-160.[Crossref]
  • Lin J. R., 1999. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology Int., 32, 207-216. DOI:10.1016/S0301-679X(99)00034-1.[Crossref]
  • Lin J. R., 2001. Non-newtonian effects on the dynamic characteristics of one dimensional slider bearings: rabinowitsch model. Tribology Letters, 10, 237-243. DOI: 10.1023/A:1016678208150.[Crossref]
  • Pinkus O., Sternlicht B., 1961. Theory of hydrodynamic lubrication. McGra-Hill Book Company, Inc, New York.
  • Savins J.G., 1958. Generalised Newtonian (pseudoplastic) flow in stationary pipes and annuli. Trans. AIME, 213, 325-332.
  • Serangi M., Majumda B. C., Sekhar A. S., 2005. Elastohydrodynamically lubricated ball bearings with couple stress fluids, part 1: steady state analysis. Tribology Trans., 48, 404-414.[Crossref]
  • Shukla J. B., Prasad K. R., Chnadra P., 1982. Effects of consistency variation of power law lubricants in squeeze films. Wear, 76, 299-319. DOI:10.1016/0043-1648(82)90069-2.[Crossref]
  • Usha R., Vimla P., 2000. Fluid inertia effects in a non-newtonian squeeze film between two plane annuli. Trans. ASME, 122, 872-875. DOI:10.1115/1.1288928.[Crossref]
  • Wada S., Hayashi H., 1971. Hydrodynamic lubrication of journal bearings by pseudoplastic lubricants. Bulletin of JSME, 14 (No. 69), 279-286.
  • Walicka A., Falicki J., 2010. Pressurized flow of the Herschel-Bulkley fluid in a clearance between fixed surfaces of revolution. Chem. Process Eng., 31, 199-215.
  • Walicka A., Falicki J., 2010. Inertia effects in the flow of a simple Casson fluid between two fixed surfaces of revolution. Chem. Process Eng., 30, 603-619.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10176-011-0027-1
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.