Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 3 | 215-227

Article title

Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.

Publisher

Year

Volume

32

Issue

3

Pages

215-227

Physical description

Dates

published
1 - 9 - 2011
online
5 - 10 - 2011

Contributors

  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
author
  • Polish Academy of Sciences, Institute of Fluid Flow Machinery, ul. Fiszera 14, 80-231 Gdańsk, Poland
author
  • Polish Academy of Sciences, Institute of Fluid Flow Machinery, ul. Fiszera 14, 80-231 Gdańsk, Poland

References

  • Aoki N., Hasebe S., Mae K., 2004. Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions. Chem. Eng. J., 101, 323-331. DOI: 10.1016/j.cej.2003.10.015[Crossref]
  • Aoki N., Yube K., Mae K., 2007. Fluid segment configuration for improving product yield and selectivity of catalytic surface reactions in microreactors. Chem. Eng. J., 133, 105-111. DOI: 10.1016/j.cej.2007.02.006.[Crossref][WoS]
  • Badur J., 2003, Numerical modelling of sustainable combustion In gas turbines. IFFM Publlishers, Gdańsk. (in Polish)
  • Chen G.-B, Chen C.-P., Wu C.-Y., Chao Y.-C., 2007. Effects of catalytic walls on hydrogen/air combustion inside a micro-tube. Appl. Catal. A, 332, 89-97. DOI:10.1016/j.apcata.2007.08.011[Crossref]
  • Deutschmann O., Maier L.I., Riedel U., Stroemman A.H., Dibble R.W., 2000. Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today, 59, 141-150. DOI: 10.1016/S0920-5861(00)00279-0.[Crossref]
  • Duan Z., Muzychka Y.S., 2007. Slip flow in non-circular microchannels. Microfluid Nanofluid, 3, 473-484. DOI: 10.1007/s10404-006-0141-4.[WoS][Crossref]
  • Duran J.E., Mohseni M., Taghipour F., 2010. Modeling of annular reactors with surface reaction using computational fluid dynamics (CFD), Chem. Eng. Sci., 65, 1201-1211. DOI: 10.1016/j.ces.2009.09.075.[Crossref]
  • Ewart T., Perrier P., Graur I., Méolans J.G., 2007. Tangential momentum accommodation in microtube, Microfluid Nanofluid, 3, 689-695. DOI: 10.1007/s10404-007-0158-3.[Crossref][WoS]
  • Jebauer S., Czerwińska J., 2007. Implementation of velocity slip and temperature jump boundary conditions for microfluidic devices. ITFR Reports, 5, 1-50.
  • Jóźwik P., 2010. Final report of research project OR00004905 on: Military application of micro, ultra and nanocrystalline alloys Ni3Al - Technology demonstrator of thermoactive elements for contaminated air treatment systems, Military University of Warsaw (in Polish)
  • Jóźwik P., Bojar Z., Winiarek P., 2010. Catalytic activity of Ni3Al foils in decomposition of selected chemical compounds. Inżynieria Materiałowa, 3, 654-657.
  • Karniadakis G., Beskok A., Aluru N., 2005. Microflows and Nanoflows - Fundamentals and Simulation. In: Antman S.S., Marsden J.E., Sirovich L. (Eds.), Interdisciplinary Applied Mathematics, 29, Springer.
  • Maxwell J.C., 1879. On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. London, 170, 231-256.
  • Morini G.L., Lorenzini M., Spiga M., 2005. A criterion for experimental validation of slip-models for incompressible rarefied gases through microchannels. Microfluid Nanofluid, 1, 190-196. DOI: 10.1007/s10404- 004-0028-1.[Crossref]
  • Mu D., Liu Z.-S., Huang C., Djilali N., 2008. Determination of the effective diffusion coefficient in porous media including Knudsen effects, Microfluid Nanofluid, 4, 257-260. DOI: 10.1007/s10404-007-0182-3.[WoS][Crossref]
  • Norton D.G., Vlachos D.G., 2003. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures. Chem. Eng. Sci., 58, 4871-4882. DOI: 10.1016/j.ces.2002.12.005.[Crossref]
  • Olafsen A., Daniel C., Schuurman Y., Raberg L.B., Olsbye U., Mirodatos C., 2006. Light alkanes CO2 reforming to synthesis gas over Ni based catalysts. Catal. Today, 115, 179-185. DOI: 10.1016/j.cattod.2006.02.053.
  • Pitakarnnop J., Varoutis S., Valougeorgis D., Geoffroy S., Baldas L., Colin S., 2010. A novel experimental setup for gas microflows, Microfluid Nanofluid, 8, 57-72. DOI: 10.1007/s10404-009-0447-0[Crossref][WoS]
  • Reid R.C., Sherwood T.K., 1966. The properties of gases and liquids, McGraw-Hill Book Company, New York.
  • Xu B., Ju Y., 2005. Concentration slip and its impact on heterogeneous combustion in a micro scale chemical reactor. Chem. Eng. Sci., 60, 3561-3572. DOI: 10.1016/j.ces.2005.01.022.[Crossref]
  • Yakabe H., Hishinuma M., Uratani M., Matsuzaki Y., Yasuda I., 2000. Evaluation and modeling of performance of anode-supported solid oxide fuel cell, J. Power Sources, 86, 423-431. DOI: 10.1016/S0378-7753(99)00444-9.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10176-011-0017-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.