Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 3 | 203-214

Article title

Characteristics of the flow field in the combustion chamber of the internal combustion test engine


Title variants

Languages of publication



Results of a research study into the velocity field in combustion chamber of internal combustion engine are presented in the paper. Measurements of fresh charge flow velocity in the cylinder axis and near the cylinder squeezing surface were performed. The hot-wire anemometer was used. The measurement results were used for analysis of turbulence field in the examined combustion chamber. It turned out that in the axis of cylinder the maximum of velocity occurs 30 deg before TDC and achieves 6 m/s. In the studied combustion chamber, the maximum value of turbulence intensity was close to 0.2 and it was achieved 35 deg BTDC. Additionally, the maximal velocity dispersion in the following cycles of the researched engine was at the level of 2 m/s, which is 35% of the maximum value of flow velocity. At a point located near the squeezing surface of the piston, a similar level of turbulence, but a the smaller value of the average velocity was achieved. The turbulence field turned out to be inhomogeneous in the combustion chamber.










Physical description


1 - 9 - 2011
5 - 10 - 2011


  • Institute of Internal Combustion Engines and Control Engineering, Czestochowa University of Technology, ul. Armii Krajowej 21, 42-201 Czestochowa, Poland
  • Institute of Internal Combustion Engines and Control Engineering, Czestochowa University of Technology, ul. Armii Krajowej 21, 42-201 Czestochowa, Poland


  • Akkerman V., Ivanov M., Bychkov V., 2009. Turbulent flow produced by piston motion in a spark-ignition engine. Flow Turbul. Combust., 317-337. DOI: 10.1007/s10494-008-9179-6[WoS][Crossref]
  • Basha S. A., Raja Gopal K., 2009. In-cylinder fluid flow, turbulence and spray models - A review. Renew. Sustain. Energy Rev., 1620-1627. DOI: 10.1016/j.rser.2008.09.023.[Crossref][WoS]
  • Breuer S., Oberlack M., Peters N., 2005. Non-isotropic length scales during the compression stroke of a motored piston engine. Flow, Turbul. Combust., 145-167. DOI: 10.1007/s10494-005-5457-8.[Crossref]
  • Catania A.E., Mittica A., 1985. Analysis of turbulent flow parameters in a motored automotive engine. International Symposium COMODIA, 99-106.
  • Catania A.E., Mittica A., 1989. Extraction techniques and analysis of turbulence quantities from in-cylinder velocity data. ASME J. Eng. Gas Turbines and Power, Vol. 111, DOI: 10.1115/1.3240277.[Crossref]
  • Chan V.S.S., Turner J.T., 2000. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry. Opt. Laser Technol., 32, 557-566. DOI: 10.1016/S0030-3992(00)00097-9.[Crossref]
  • Cupiał K., Sosnowski M., Jamrozik A., Kociszewski A., Tutak W., 2007. Flame kernel formation around a spark plug of SI engine using KIVA-3V with standard and newly developed ignition model. Combust. Engines, 203-206.
  • Das S., Chmiel D.M., 1994. Computational and experimental study of in-cylinder flow in a Direct Injection Gasoline (DIG) engine. Delphi Automotive Systems, Technical Center Rochester, New York.
  • Dimopoulos P., Boulouchos K., 1997. Turbulent flow field characteristics in a motored reciprocating engine. SAE Trans., 972833, 2213-2231. DOI: 10.4271/972833.[Crossref]
  • El Khafaji A.H.A., Tindal M.J., Williams T.J., 1972. Measurements of induction gas velocities in reciprocating engine cylinders. SAE Trans., 81, 720115. DOI: 10.4271/720115.[Crossref]
  • Elsner J.W., Drobniak S., 1995. Metrology of turbulent flows. PAN, Wrocław (in Polish).
  • Erdil A., Kodal A., Aydin., 2002. Decomposition of turbulent velocity fields in an SI engine. Flow, Turbul. Combust., 91-110. DOI: 10.1023/A:1020467008591.[Crossref]
  • Hascher H.G., Jaffri K., Novak M., Lee K., Schock H., Bonne M., Keller P., 1997. An evaluation of turbulent kinetic energy for the in-cylinder flow of a four-valve 3.5L SI engine using 3-D LDV measurements. SAE Trans., 970793, 1002-1011. DOI: 10.4271/970793.
  • Hassan H., Dent J.C., 1971. The measurement of air velocity in a motored internal combustion engine using a hotwire anemometer. Proc. Inst. Mech. Eng., 185, 50/75. DOI: 10.1243/PIME_PROC_1970_185_065_02[Crossref]
  • Heywood J. B., 1986. Fluid motion within the cylinder of internal combustion engines. The 1986 Freeman Scholar Lecture. ASME J. Fluids Eng., 109, No. 3. DOI: 10.1115/1.3242612.[Crossref]
  • Heywood J. B., 1988. Internal combustion engine fundamentals. McGraw-Hill.
  • Horvatin M., Hussman A.W., 1969. Measurements of air movements in internal combustion engine cylinders. DISA Information, No. 8, July 1969.
  • Huang R. F., Lin K. H., Yeh C. N., Lan J., 2009. In-cylinder tumble flows and performance of a motorcycle engine with circular and elliptic intake ports. Exp. Fluids, 165-179. DOI: 10.1007/s00348-008-0551-z.[Crossref]
  • Huang R. F., Yang H. S., Yeh C. N., 2008. In-cylinder flows of a motored four-stroke engine with flat-crown and slightly concave-crown pistons. Exp. Therm. Fluid Sci., 1156-1167. DOI: 10.1016/j.expthermflusci.2008.01.008.[Crossref][WoS]
  • Mirkowski J., 1995. The use of hot-wire anemometry in the studies of flows within the combustion engine cylinder. MOTOAUTU'95, Sofia 1995, 145-152.
  • Patterson D. J., 1966. Cylinder pressure variations, a fundamental combustion problem. SAE Trans., 660129. DOI: 10.4271/660129.[Crossref]
  • Paul B., V. Ganesan V. 2010. Flow field development in a direct injection diesel engine with different manifolds. Int. J. Eng. Sci. Technol., Vol. 2, No. 1, 80-91.
  • Ražnjevic K., 1966. Thermal tables with charts. WNT, Warszawa (in Polish).
  • Sak C., Liu R., Ting D. S., Rankin G. W., 2007. The role of turbulence length scale and turbulence intensity on forced convection from a heated horizontal circular cylinder. Exp. Therm. Fluid Sci., 279-289. DOI: 10.1016/j.expthermflusci.2006.04.007.[Crossref][WoS]
  • Urushihara T., Murayama T., Takagi Y., Lee K.H., 1996. Turbulence and cycle-by-cycle variation of mean velocity generated by swirl and tumble flow and effects on combustion. SAE Trans., 950813, 1382-1389. DOI: 10.4271/950813.[Crossref]
  • Wagner, R. M., Drallmeier, J. A. Daw, C. S., 2000. Characterization of lean combustion instability in premixed charge spark ignition engines. Mech. Aerosp. Eng., 301-320. DOI: 10.1243/1468087001545209.[Crossref]
  • Whitelaw J.H., Xu H.M., 1995. Cyclic variations in a lean-burn spark ignition engine without and with swirl. SAE Trans., 950683. DOI: 10.4271/950683.[Crossref]
  • Wigley G., Hawkins M. G., 1978. Three dimensional velocity measurements by laser anemometry in a diesel engine cylinder under steady state inlet flow conditions. SAE Trans., 780060. DOI: 10.4271/780060.[Crossref]
  • Yamaguchi K., Yamamoto H., Shirashi T., Ohsuga M., 1996. Influence of mixture preparation on HC emission SI engine with high swirl ratio cold conditions. JSAE, 17, 107-112. DOI: 10.1016/0389-4304(95)00067-4.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.