Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 2 | 135-154

Article title

A comparative study of thermodynamic electrolyte models applied to the Solvay soda system


Title variants

Languages of publication



Fast development of computation techniques for electrolyte activities contributed recently to introduction of a few substantial programmes for thermodynamic computing of multiphase systems. The presented study comprises useful information for practical computing using selected thermodynamic models of aqueous electrolyte solutions. Those models enable quantitative description of both phase and ionic equilibria and provide values of activity coefficients. The carried out analysis of individual models involved a comparison of their practical effectiveness features along with problems encountered in evaluation of the coefficients. The authors conclude that for the Solvay soda system the exUNIQUAC model for an in-house code or the MSE model for a commercial one can be used.









Physical description


1 - 6 - 2011
11 - 7 - 2011


  • Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, al. Piastów 42, 71-065 Szczecin, Poland
  • Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, al. Piastów 42, 71-065 Szczecin, Poland
  • Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, al. Piastów 42, 71-065 Szczecin, Poland


  • Abrams D.S., Prausnitz J.M., 1975. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J., 21, 116-128. DOI: 10.1002/aic.690210115.[Crossref]
  • Anderko A., Wang P., Rafal M., 2002. Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilib., 194-197, 123-142. DOI:10.1016/S0378-3812(01)00645-8.[Crossref]
  • Arrhenius S. A., 1887. On the dissociation of substances dissolved in water. Zeitschrift für physikalische Chemie, 631.
  • Balaban A., Kuranov G., Smirnova N., 2002. Phase equilibria modeling in aqueous systems containing 2-propanol and calcium chloride or/and magnesium chloride. Fluid Phase Equilib., 194-197, 717-728. DOI: 10.1016/S0378-3812(01)00783-X.[Crossref]
  • Bernardis M., Carvoli G., Delogu P., 1989. NH3 - CO2 - H2O VLE calculation using an extended UNIQUAC equation. AIChE J., 35, 314-317. DOI:10.1002/aic.690350217.[Crossref]
  • Bethke C.M., 2008. Geochemical and biogeochemical reaction modeling. 2nd edition, Cambridge University Press, Cambridge.
  • Bromley L.A., 1973. Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J., 19, 313-320. DOI:10.1002/aic.690190216.[Crossref]
  • Chen C.-C., Britt H.I., Boston J.F., Evans L.B., 1979. Extension and application of the Pitzer equation for vapor - liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE J., 25, 820-831. DOI: 10.1002/aic.690250510.[Crossref]
  • Chen C.-C., Britt H.I., Boston J.F., Evans L.B., 1980. Two new activity coefficient models for the vapour-liquid equilibrium of electrolyte systems. In: Newman S.A. (Ed), Thermodynamics of aqueous systems with industrial applications. American Chemical Society ACS Symposium Series 133, Washington, 61-89. DOI: 10.1021/bk-1980-0133.ch004.[Crossref]
  • Chen C.-C., Britt H.I., Boston J.F., Evans L.B., 1982. Local composition models for excess Gibbs energy of electrolyte systems. AIChE J., 28, 588-596. DOI: 10.1002/aic.690280410.[Crossref]
  • Chen C.-C., Evans L.B., 1986. A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J., 32, 444-454. DOI: 10.1002/aic.690320311.[Crossref]
  • Chen C.-C., 1986. Representation of solid - liquid equilibrium of aqueous electrolyte systems with the electrolyte NRTL model. Fluid Phase Equilib., 27, 457-474. DOI: 10.1016/0378-3812(86)87066-2.[Crossref]
  • Cruz J.L., Renon H., 1978. A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentration. AIChE J., 25, 817-830. DOI: 10.1002/aic.690240508.[Crossref]
  • Debye P., Hückel E., 1923. The theory of electrolytes. Part I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift, 185-206, 305-325.
  • Duan Z., Sun R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271. DOI: 10.1016/S0009-2541(02)00263-2.[Crossref]
  • Gustafsson J.P., 2004. Visual MINTEQ version 2.30. KTH Royal Institute of Technology, Sweden.
  • Haghtalab A., Vera J.H., 1988. Nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE J., 34, 803-813. DOI: 10.1002/aic.690340510.[Crossref]
  • Haghtalab A., Mokhtarani B., 2001. On extension of UNIQUAC-NRF model to study the phase behavior of aqueous two phase polymer - salt systems. Fluid Phase Equilib., 180, 139-149. DOI:10.1016/S0378-3812(00)00518-5.[Crossref]
  • Jaworski Z., Czernuszewicz M., Gralla Ł., 2010. A comparative study of two thermodynamic models applied to aqueous solutions of the NH3 - H3PO4 and NH3 - CO2 - NaCl systems. Chem. Process Eng., 31, 789-811.
  • Kamps A.P.S., Sing R., Rumpf B., Maurer G., 2000. Influence of NH4Cl, NH4NO3, and NaNO3 on the simultaneous solubility of ammonia and carbon dioxide in water. J. Chem. Eng. Data, 45, 796-809. DOI: 10.1021/je000106+.[Crossref]
  • Königsberger E., Eriksson G., 2008. FactSage and ChemApp: Two tools for the prediction of multiphase chemical equilibria in solutions. Pure Appl. Chem., 80, 1293-1302. DOI: 10.1351/pac200880061293.[Crossref]
  • Kurz F., Rumpf B., Maurer G., 1995. Vapor - liquid - solid equilibria in the system NH3 - CO2 - H2O from around 310 to 470 K. New experimental data and modeling. Fluid Phase Equilib., 104, 261-275. DOI: 10.1016/0378-3812(94)02653-I.[Crossref]
  • Kurz F., Rumpf B., Sing R., Maurer G., 1996. Vapor - liquid and vapor - liquid - solid equilibria in the system ammonia - carbon dioxide - sodium chloride - water at temperatures from 313 to 393 K and pressures up to 3 MPa. Ind. Eng. Chem. Res., 35, 3795-3802. DOI: 10.1021/ie960205+.[Crossref]
  • Lin Y., ten Kate A., Mooijer M., Delgado J., Fosbol P.L., Thomsen K., 2010. Comparison of activity coefficient models for electrolyte systems. AIChE J., 56, 1334-1351. DOI: 10.1002/aic.[Crossref]
  • Liu Y., Harvey A., Prausnitz J.M., 1989. Thermodynamics of Concentrated Electrolyte Solutions. Chem. Eng. Commun., 77, 43-66. DOI: 10.1080/00986448908940172.[Crossref]
  • Liu Y., Watanasiri S., 1999. Successfully simulate electrolyte systems. Chem. Eng. Prog., 10, 25-42.
  • Loehe J.R., Donohue, M.D., 1997. Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems. AIChE J., 43, 180-195. DOI: 10.1002/aic.690430121.[Crossref]
  • Meissner H.P., Kusik C.L., 1973. Aqueous solutions of two or more strong electrolytes: vapor pressure and solubilities. Ind. Eng. Chem. Process Des. Dev., 12, 205-208, DOI: 10.1021/i260046a013.[Crossref]
  • Mullin J.W., 2001. Crystalization. Butterworth Heinemann, Oxford.
  • OLI Systems Inc., 2010. A guide to using OLI Analyzer Studio v. 3.1.
  • Pahlevanzadeh H., Mohseni Ahooei A., 2005. Estimation of UNIQUAC - NRF model parameters for CO2 - NH3 - H2O system. Iran. J. Chem. and Chem. Eng., 24, 21-26. DOI 1021-9986/05/1/21.
  • Parkhurst D.L., Appelo C.A.J., 1999. User's guide to PHREEQC. US Geol. Surv. Water Resour. Inv. Rep.
  • Pawlikowski E.M., Newman J., Prausnitz J.M., 1982. Phase equilibria for aqueous solutions of ammonia and carbon dioxide. Ind. Eng. Chem. Process Des. Dev., 21, 764-770. DOI: 0196-4305/82/1121-0764$01.25/0.
  • Pazuki G.R., Pahlevanzadeh H., Mohseni Ahooei A., 2006a. Prediction of phase behavior of CO2 - NH3 - H2O system by using the UNIQUAC-Non Random Factor (NRF) model. Fluid Phase Equilib., 241, 57-64. DOI:10.1016/j.fluid.2006.01.002.[Crossref]
  • Pazuki G.R., Pahlevanzadeh H., Mohseni Ahooei A., 2006b. Solubility of CO2 in aqueous ammonia solution at low temperature. Comp. Coupling Phase Diagr. Termochem., 30, 27-32. DOI:10.1016/j.calphad.2005.11.006.
  • Piotrowski J., Kozak R., Kujawska M., 1998. Thermodynamic model of chemical and phase equilibrium in the urea synthesis process. Chem. Eng. Sci., 53, 183-186. DOI:10.1016/S0009-2509(97)00271-6.[Crossref]
  • Pitzer K.S., 1973. Thermodynamics of electrolyte. Part I. Theoretical basis general equations. J. Phys. Chem., 77, 268-277. DOI: 10.1021/j100621a026.[Crossref]
  • Prausnitz J.M., Lichtenthaler R.N., Gomes de Azevedo E., 1999. Molecular thermodynamics of fluid phase equilibria, 3rd edition, New-Jersey.
  • Renon H., Prausnitz J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 14, 135-144. DOI:10.1002/aic.690140124.[Crossref]
  • Renon H., 1986. Electrolyte Solutions. Fluid Phase Equilib., 30, 181-195. DOI:10.1016/0378-3812(86)80053-X.[Crossref]
  • Sander B., 1984. Extended UNIFAC/UNIQUAC models for 1) Gas solubility calculations and 2) Electrolyte solutions. Ph. D. Thesis Technical University of Denmark, Denmark.
  • Sander B., Rasmussen A., Fredenslund A., 1986. Calculation of vapour-liquid equilibria in nitric acid - water - nitrate salt systems using an extended UNIQUAC equation. Chem. Eng. Sci., 41, 1185-1195. DOI:10.1016/0009-2509(86)87091-9.[Crossref]
  • Silcock H.L., 1979. Solubilities of inorganic and organic compounds. Pergamon Press, London.
  • Sing R., Rumpf B., Maurer G., 1999. Solubility of ammonia in aqueous solutions of single electrolytes sodium chloride, sodium nitrate, sodium acetate, and sodium hydroxide. Ind. Eng. Chem. Res., 38, 2098-2109. DOI: 10.1021/ie980572g.[Crossref]
  • Stephen H., Stephen T., 1963. Solubilities of inorganic and organic compounds. Binary systems. Pergamon Press, Oxford.
  • Thomsen K., Rasmussen P., Gani R., 1996. Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems. Chem. Eng. Sci., 51, 3675-3683. DOI: 10.1016/0009-2509(95)00418-1.[Crossref]
  • Thomsen K., 1997. Aqueous electrolytes: model parameters and process simulation. Ph. D. Thesis Technical University of Denmark, Denmark.
  • Thomsen K., Rasmussen P., 1999. Modeling of vapour - liquid - solid equilibrium in gas - aqueous electrolyte systems. Chem. Eng. Sci., 54, 1787-1802. DOI:10.1016/S0009-2509(99)00019-6.[Crossref]
  • Walas S.M., 1985. Phase equilibria in chemical engineering. Butterworths, London.
  • Wang P., Anderko A., Young R.D., 2002. A speciation - based model for mixed - solvent electrolyte system. Fluid Phase Equilib., 203, 141-176. DOI: 10.1016/S0378-3812(02)00178-4.[Crossref]
  • Wilson G.M., 1964. Vapor - liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc., 86, 127-130. DOI: 10.1021/ja01056a002.[Crossref]
  • Zemaitis J.F., Clark D.M., Rafal M., Scrivner N.C., 1986. Handbook of aqueous electrolyte thermodynamics. DIPPR, New York.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.