Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 2 | 117-134

Article title

Modelling the effects of failure of pipelines transporting hydrogen


Title variants

Languages of publication



The depletion of stocks of fossil fuels and the environment protection requirements increase the significance of hydrogen as a future energy carrier. The present research is focused on the development of new safe methods of production, transport and storage of hydrogen. The paper presents an analysis of problems related to the assessment of the effects of failure of hydrogen transporting pipelines. Scenarios of hazardous events connected with an uncontrollable leakage of hydrogen are discussed. The sizes of heat radiation and pressure wave hazard zones are determined.










Physical description


1 - 6 - 2011
11 - 7 - 2011


  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice


  • Buczek B., Czepirski L., Ziętkiewicz J., 2007. Optimization of hydrogen volumetric storage capacity for microporous carbon materials, Chem. Process Eng., 28, 47-55.
  • EC Regulation, 2009. Regulation (EC) No 79/2009 of the European Parliament and of the Council of 14 January 2009 on type-approval of hydrogen-powered motor vehicles, and amending Directive 2007/46/EC, available at:
  • Elvers B., 2008. Handbook of fuels. Viley-VCH, Wienhaim.
  • Gerboni R., Salvador E., 2009. Hydrogen transportation systems: Elements of risk analysis. Energy, 34, 2223-2229. DOI: 10.1016/j.energy.2008.12.018.[Crossref]
  • Guidelines for evaluating the characteristics of vapour cloud explosions, flash fires and BLEVES, 1998. American Institute of Chemical Engineers, New York.
  • Houf W., Schefer R., 2007. Predicting radiative heat fluxes and flammability envelopes from unintended releases of hydrogen. Int. J. Hydrogen Energy, 32, 136-151. DOI: 10.1016/j.ijhydene.2006.04.009.[WoS][Crossref]
  • Lachance J., Tchouvelev A., Engebo A., 2011. Development of uniform harm criteria for use in guantitative risk analisys of hydrogen infrastructure. Int. J. Hydrogen Energy, 36, 2381-2388. DOI: 10.1016/j.ijhydene.2010.03.139.[WoS][Crossref]
  • Lobato J., Cańizares P., Rodrigo M.A., Sáez C., Linares J.J., 2006. A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2. Int. J. Hydrogen Energy, 31, 1780-1790. DOI: 10.1016/j.ijhydene.2006.01.006[Crossref]
  • Mogi T., Horiguchi S., 2009. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames. J. Loss Prev. Process Ind., 22, 45-51. DOI: 10.1016/j.jlp.2008.08.006.[WoS][Crossref]
  • Rigas F., Sklavounos S., 2005. Evaluation of hazard associated with hydrogen storage facilities. Int. J. Hydrogen Energy, 30, 1501-1510. DOI: 10.1016/j.ijhydene.2005.06.004.[Crossref]
  • Scheffef R.W., Houf W.G., Williams T.C., Bourne B., Colton J., 2007. Characterization of high-pressure, underexpanded hydrogen-jet flames. Int. J. Hydrogen Energy, 32, 2081-2093. DOI: 10.1016/j.ijhydene.2006.08.037.[Crossref]
  • Surygała J., 2008. Hydrogen as fuel. WNT, Warszawa (in Polish).
  • van den Bosch C.J.H., Weterings R.A.P.M. (Eds.), 2005. Methods for the calculation of physical effects. Yellow Book. The Hague.
  • Yo Y.-D., Ahn B.J., 2006. Analysis of hazard area associated with hydrogen gas transmission pipelines. Int. J. Hydrogen Energy, 31, 2122-2130. DOI: 10.1016/j.ijhydene.2006.01.008.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.