Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 32 | 1 | 57-68

Article title

The influence of hygienisation of sewage sludge on the process of pyrolysis


Title variants

Languages of publication



The aim of this work was to determine the influence of liming on the process of pyrolysis. Three samples of sludge from two wastewater treatment plants were selected for this study on pyrolysis: sludge without liming and limed sludge from the Central Wastewater Treatment Plant in Ostrava and sludge from the Wastewater Treatment Plant in Sviadnov. The samples had different content of calcite (CaCO3). The limed sludge contained 7% of CaCO3, sludge without liming 3.8% and sludge without liming from WWTP Sviadnov contained 0.5% of calcite. The results of laboratory pyrolysis proved that limed sludge released the maximum amount of carbon - 55.46 %, while sludge without liming from WWTP Sviadnov released only 48.92%. Calcite produces during its decomposition CaO and the product influences the pyrolysis process because it supports cracking of volatile organic compounds










Physical description


1 - 3 - 2011
5 - 4 - 2011


  • Faculty of Mining and Geology, Institute of Environmental Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava - Poruba, Czech Republic
  • Faculty of Mechanical Engineering, Department of Energy Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava - Poruba, Czech Republic
  • Faculty of Mining and Geology, Institute of Geological Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava - Poruba, Czech Republic


  • Arabiourrutia M., Lopez G., Elordi G., Olazar M., Aguado R., Bilbao, J., 2007. Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chem. Eng. Sci., 62, 5271-5275. DOI: 10.1016/j.ces.2006.12.026.[WoS][Crossref]
  • Barbooti M. M., Mohamed T. J., Hussain A. A., Abas, F. O., 2004. Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere. J Anal. Appl. Pyrol., 72, 165-170. DOI:10.1016/j.jaap.2004.05.001.[Crossref]
  • Bellais M., 2007. Modelling of the pyrolysis of large wood particles. Ph.D Thesis, KTH Chemical Science and Engineering, Stockholm.
  • Boxiong S., Chunfei W., Liang C., Binbin G., Rui W., 2006. Pyrolysis of waste tyres: The influence of USY catalyst/tyre ratio on products. J Anal. Appl. Pyrol., 78, 243-249. DOI: 10.1016/j.jaap.2006.07.004.[Crossref][WoS]
  • Caballero J. A., Front R., Marcilla A., Conesa J. A., 1997. Characterization of sewage sludges by primary and secondary pyrolysis. J Anal. Appl. Pyrol., 40-41, 433-450,. DOI: 10.1016/S0165-2370(97)00045-4.[Crossref]
  • Conesa J. A., Marcilla A., Moral R., Moreno-Caselles J., Perez-Espinosa A., 1998. Evolution of gases in the primary pyrolysis of different sewage sludges. Thermochim. Acta, 313, 63-73. DOI: 10.1016/S0040-6031(97)00474-7.[Crossref]
  • Couhert C., Commandre J. M., Salvador S., 2009. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel, 88, 408-417. DOI: 10.1016/j.fuel.2008.09.019.[WoS][Crossref]
  • Di Blasi C., 2008. Modelling chemical and physical processes of wood and biomass pyrolysis. Energy Comb. Sci., 34, 47-90. DOI: 10.1016/j.pecs.2006.12.001.[Crossref]
  • Domínguez A., Menéndez J. A., Pis J. J., 2006. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J Anal. Appl. Pyrol., 77, 2006, 127-132. DOI: 10.1016/j.jaap.2006.02.003.[Crossref]
  • Filip Z., Alberts J. J., Cheshire M. V., Goodman B. A., Bacon J. R., 1988. Comparison of salts marsh humic acid with humic-like substancs from the indigenous plant species Spartina Alterniflora (loisel). Sci. Total Environ., 74, 157-172. DOI: 10.1016/0048-9697(88)90164-7.[Crossref]
  • Fonts I., Azuara M., Gea G., Murillo M. B., 2009. Study of the pyrolysis liquids obtained from different sewage sludge. J Anal. Appl. Pyrol, 85, 184-191. DOI: 10.1016/j.jaap.2008.11.003.[WoS][Crossref]
  • Fullana A., Conesa J. A., Font R., Martín-Gullón I., 2003. Pyrolysis of sewage sludge: nitrogenated compounds and pretreatment effects. J Anal. Appl. Pyrol., 68-69, 561-575. DOI: 10.1016/S0165-2370(03)00052-4.[Crossref]
  • Fytili D., Zabaniotou A., 2008. Utilization of sewage sludge in EU application of old and new methods-A review. Ren. Sus. Ener. Rev., 12, 116-140. DOI: 10.1016/j.rser.2006.05.014.[Crossref]
  • Gasco G., Cueto M. J., Méndez A., 2007. The effect of acid treatment on the pyrolysis behavior of sewage sludges. J Anal. Appl. Pyrol, 80, 496-501. DOI: 10.1016/j.jaap.2007.03.009.[Crossref][WoS]
  • Gascó G., Blanco C. G., Guerrero F., Méndez Lázaro A. M., 2005. The influence of organic matter on sewage sludge pyrolysis. J Anal. Appl. Pyrol, 74, 413-420.
  • Gondar D., Lopez R., Fiol S., Antelo J. M., Arce F., 2005. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotropic peat bog. Geoderma, 126, 367-374.
  • Haykiri-Acma H., Yaman S., Kucukbayrak S., 2010. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process. Tech., 91, 759-764. DOI: 10.1016/j.fuproc.2010.02.009.[WoS][Crossref]
  • Hossain M. K., Strezov V., Nelson P. F., 2009. Thermal characterisation of the products of wastewater sludge pyrolysis. J Anal. Appl. Pyrol, 85, 442-446. DOI: 10.1016/j.jaap.2008.09.010.[Crossref]
  • Chen Y., Senesi N., and Schnitzer M., 1977. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J., 41, 352-358.
  • Inguanzo M., Domínguez A., Menéndez J. A., Blanco C. G., Pis J. J., 2002. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal. Appl. Pyrol, 63, 209-222. DOI: 10.1016/S0165-2370(01)00155-3.[Crossref]
  • Islam M. R., Haniu H., Beg M. R. A., 2008. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel, 87, 3112-3122. DOI: 10.1016/j.fuel.2008.04.036.[WoS][Crossref]
  • Lin K.-H., Hsu H.-T., KO Y.-W., Shieh Z.-X., Chiang H.-L., 2009. Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry. J Hazard. Mater., 171, 2009, 208-214. DOI: 10.1016/j.jhazmat.2009.05.127.[WoS][Crossref]
  • Liu Q., Hu H., Zhou Q., Zhu S., Chen G., 2004. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel, 83, 713-718. DOI: 10.1016/j.fuel.2003.08.017.[Crossref]
  • Menéndez J. A., Domínguez A., Inguanzo M., Pis J. J., 2004: Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal. Appl. Pyrol, 71, 657-667. DOI: 10.1016/j.jaap.2003.09.003.[Crossref]
  • Méndez A., Gascó G., Freitas M. M. A., Siebielec G., Stuczynski T., Figueiredo J. L., 2005. Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chem. Eng. J, 108, 169-177. DOI: 10.1016/j.cej.2005.01.015.[Crossref]
  • Mészáros E., Jakab E., Várhegyi G., 2007. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J Anal. Appl. Pyrol, 79, 61-70. DOI: 10.1016/j.jaap.2006.12.00[WoS][Crossref]
  • Patwardhan P. R., Satrio J. A., Brown R. C., Shanks B. H., 2010: Influence of inorganic salts on the primary pyrolysis products of cellulose. Biores. Tech., 101, 4646-4655. DOI: 10.1016/j.biortech.2010.01.112.[Crossref]
  • Raclavská H., 2007. Technology for processing and utilization of sludge from municipal wastewater treatment plant, VŠB - Technická Univerzita, Ostrava (in Czech).
  • Radović L. R., Walker P. L., Jenkins R. G., 1983. Effect of lignite pyrolysis conditions on calcium oxide dispersion and subsequent char reactivity. Fuel, 62, 209-212. DOI: 10.1016/0016-2361(83)90200-4.[Crossref]
  • Raveendran K., Ganesh A., Khilar K. C., 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74, 1812-1822. DOI: 10.1016/0016-2361(95)80013-8.[Crossref]
  • Sánchez M. E., Menéndez J. A., Domínguez A., Pis J. J., Martínez O., Calvo L. F., Bernad P. L., 2009. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biom. Bioener., 33, 933-940. DOI: 10.1016/j.biombioe.2009.02.002.[Crossref]
  • Sato S., Lin S., Suzuki Y., Hatano H., 2003. Hydrogen production from heavy oil in the presence of calcium hydroxide. Fuel, 82, 561-567. DOI: 10.1016/S0016-2361(02)00328-9.[Crossref]
  • Swift R. S., 1996. Organic matter characterization, In: Sparks D. L., Page A. L., Helmke P. A., Loeppert R. H., Soltanpour P. N., Tabatabai M. A., Johnson C. T., Sumner M. E. (Eds) Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am. Book Series: 5. Soil Science Society of America, Inc. Madison, Wisconsin, 1018-1020.
  • Warman P. R., Termeer W. C., 2005. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Biores. Tech., 96, 955-961. DOI: 10.1016/j.biortech.2004.08.003.[Crossref]
  • Werle S., Wilk K. R., 2010. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew. Energ., 35, 1914-1919. DOI:10.1016/j.renene.2010.01.019.[Crossref][WoS]
  • Werther J., Ogada T., 1999. Sewage sludge combustion. Prog. Energy Comb. Sci., 25, 55-116. DOI: 10.1016/S0360-1285(98)00020-3.[Crossref]
  • Williams P. T., Slaney E., 2007. Analysis of product from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resour. Conservat. Recycl., 51, 754-769. DOI: 10.1016/j.resconrec.2006.12.002.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.