Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 33 | 73-79

Article title

Effects of Exercise Continued Until Anaerobic Threshold on Balance Performance in Male Basketball Players

Content

Title variants

Languages of publication

EN

Abstracts

EN
The objective of the present study was to determine the effects of exercise continued until the anaerobic threshold on balance performance in basketball players. Twelve male basketball players (age = 20.92 ± 2.81 years, body height = 192.72 ± 7.61 cm, body mass = 88.09 ± 8.41 kg, training experience = 7.17 ± 3.10 years) volunteered to participate in this study. A Kinesthetic Ability Trainer (KAT 2000 stabilometer) was used to measure the balance performance. Balance tests consisted of static tests on dominant, nondominant and double leg stance. The Bruce Protocol was performed by means of a treadmill. The exercise protocol was terminated when the subject passed the anaerobic threshold. After the exercise protocol, balance measurements were immediately repeated. Statistical differences between pre and post-exercise for dominant, nondominant and double leg stance were determined by the paired samples t-test according to the results of the test of normality. The post-exercise balance score on the dominant leg was significantly higher than pre-exercise (t = -2.758, p < 0.05). No differences existed between pre- and postexercise in the balance scores of the nondominant leg after the exercise protocol (t = 0.428, p > 0.05). A significant difference was found between pre and post-exercise balance scores in the double leg stance (t = -2.354, p < 0.05). The main finding of this study was that an incremental exercise continued until the anaerobic threshold decreased balance performance on the dominant leg in basketball players, but did not alter it in the nondominant leg.

Publisher

Year

Volume

33

Pages

73-79

Physical description

Dates

published
1 - 6 - 2012
online
4 - 7 - 2012

Contributors

  • School of Physical Education and Sport, Selcuk University, Konya, Turkey
author
  • School of Physical Education and Sport, Gazi University, Ankara, Turkey
  • Department of Physical Medicine and Rehabilitation, Gulhane Military Medical Academy, Ankara, Turkey

References

  • Ageberg E, Roberts D, Holmstrom E, Friden T. Balance in single-limb stance in healthy subjects - reliability of testing procedure and the effect of short-duration sub-maximal cycling. BMJ Musculoskel Dis, 2003; 4: 14.[Crossref]
  • Anderson K, Behm DG. The impact of instability resistance training on balance and stability. Sports Med, 2005; 35(1): 43-53.[Crossref][PubMed]
  • Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Training, 1999; 34(2): 86-92.
  • Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol, 1986; 60: 2020-2027.[PubMed]
  • Bruce RA. Multi-stage treadmill tests of maximal and submaximal exercise. In: A Handbook for Physicians, Exercise Testing and Training of Apparently Healthy Individuals. New York: American Heart Association. 1972.
  • Demura S, Uchiyama M. Influence of anaerobic and aerobic exercises on the center of pressure during an upright posture. J Exerc Sci Fit, 2009; l7 (1): 39-47.[Crossref][WoS]
  • Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetic in the lower extremity. Med Sci Sports Exerc, 1992; 24: 108-115.
  • Gray J, Taunton JE, McKenzie DC, Clement DB, McConkey JP, Davidson RG. A survey of injuries to the anterior cruciate ligament of the knee in female basketball players. Int J Sports Med, 1985; 6: 314-316.[Crossref][PubMed]
  • Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil, 2004; 85: 589-92.[Crossref][PubMed]
  • Hanon C, Thepaut-Mathieu C, Hausswirth C, Le Chevalier JM. Electromyogram as an indicator of neuromuscular fatigue during incremental exercise. Eur J Appl Physiol, 1998; 78: 315-323.[Crossref]
  • Hansen MS, Dieckmann B, Jensen K, Jakobsen BW. The reliability of balance tests performed on the kinesthetic ability trainer (KAT 2000). Knee Surg Sport Tr A, 2000; 8: 180-185.[Crossref]
  • Ishikawa T, Takemiya T. Endurance Science. Tokyo: Kyourin. 1994.
  • Janssen P. Lactate threshold Training. Human Kinetics, Champaign, IL: Human Kinetics. 2001.
  • Kellis S, Gerodimos V, Kellis E, Manou V. Bilateral isokinetic concentric and eccentric strength profiles of the knee extensors and flexors in young soccer players. Isokinet Exerc Sci, 2001; 9: 31-39.
  • Khanna P, Kapoor G, Zutshi K. Balance deficits and recovery timeline after different fatigue protocols. Indian Journal of Physiotherapy and Occupational Therapy, 2008; 2(3): 42-54.
  • Lepers R, Bigard AX, Diard JP, Gouteyron JF, Guezennec CY. Posture control after prolonged exercise. Eur J Appl Physiol, 1997; 76: 55-61.[Crossref]
  • Lichtenstein MJ, Shields SL, Shiavi RG, Burger MC. Clinical determinants of biomechanics platform measures of balance in aged women. J Am Geriatr Soc, 1988; 36: 996-1002.[PubMed]
  • Matsuda S, Demura S, Uchiyama M. Centre of pressure sway characteristics during static one-legged stance of athletes from different sports. J Sports Sci, 2008; 26(7): 775 - 779.[Crossref][PubMed]
  • McGuine TA, Grene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. Clin J Sport Med, 2000; 10: 239-244.[Crossref][PubMed]
  • Nardone A, Tarantola J, Giordano A, Schieppati M. Fatigue effects on body balance. Electroen Clin Neuro, 1997; 105: 309-320.
  • Ochsendorf DF, Mattacola CG, Arnold BL. Effect of orthotics on postural sway after fatigue of the plantar flexors and dorsiflexors. J Athl Training, 2000; 35(1): 26-30.
  • Pedersen J, Lonn J, Hellstrom F, Djupsjobacka M, Johansson H. Localized muscle fatigue decreases the acuity of the movement sense in the human shoulder. Med Sci Sports Exerc, 1999; 31(7): 1047-1052.[Crossref][PubMed]
  • Pendergrass TL, Moore JH, Gerber JP. Postural control after a 2-mile run. Mil Med, 2003; 168(11): 896-903.[PubMed]
  • Springer BK, Pincivero DM. The effects of localized muscle and whole-body fatigue on single-leg balance between healthy men and women. Gait Posture, 2009; 30: 50-54.[PubMed][WoS][Crossref]
  • Susco TM, Mcleod TCV, Gansneder BM, Shultz SJ. Balance recovers within 20 minutes after exertion as measured by the balance error scoring system. J Athl Training, 2004; 39(3): 241-246.
  • Tarnopolsky M (2004). Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion, 4:529-42.[Crossref][PubMed]
  • Tripp BL, Yochem EM, Uhl TL. Functional fatigue and upper extremity sensorimotor system acuity in baseball athletes. J Athl Training, 2007; 42(1): 90-98.
  • Troop H, Ekstrand J, Gillquist J. Stabiliometry in functional instability of the ankle and its value in predicting injury. Med Sci Sports Exer, 1984; 16: 64-66.
  • Wasserman K, Sue DY, Whipp BJ, Hansen JE. Principles of Exercise Testing and Interpretation. Philadelphia: Lea & Febiger. 1987.
  • Waterman N, Sole G, Hale L. The effect of a netball game on parameters of balance. Phys Ther Sport, 2004; 5: 200-207.[Crossref]
  • Watson JD, Colebatch JG, McCloskey DI. Effects of externally imposed elastic loads on the ability to estimate position and force. Behav Brain Res, 1984; 13: 267-271.[PubMed][Crossref]
  • Wikstrom EA, Powers ME, Tillman MD. Dynamic stabilization time after isokinetic and functional fatigue. J Athl Training, 2004; 39(3): 247-253.
  • Wilkins JC, Mcleod TCV, Perin DH, Gansneder BM. Performance on the balance error scoring system decreases after fatigue. J Athl Training, 2004; 39(2): 156-161.
  • Yaggie JA, McGregor SJ. Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch Phys Med Rehabil, 2002; 83: 224-228.[PubMed][Crossref]
  • Yeung S, Au A, Chow C. Effects of fatigue on the temporal neuromuscular control of vastus medialis muscle in humans. Eur J Appl Phys, 1999: 80: 379-385.
  • Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc, 2000; 32: 812-819.[Crossref][PubMed]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10078-012-0046-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.