Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 29A | Special Issue | 105-112

Article title

Associations Between Dry Land Strength and Power Measurements with Swimming Performance in Elite Athletes: a Pilot Study

Content

Title variants

Languages of publication

EN

Abstracts

EN
The main aim of the present study was to analyze the relationships between dry land strength and power measurements with swimming performance. Ten male national level swimmers (age: 14.9 ± 0.74 years, body mass: 60.0 ± 6.26 kg, height: 171.9 ± 6.26, 100 m long course front crawl performance: 59.9 ± 1.87 s) volunteered as subjects. Height and Work were estimated for CMJ. Mean power in the propulsive phase was assessed for squat, bench press (concentric phase) and lat pull down back. Mean force production was evaluated through 30 s maximal effort tethered swimming in front crawl using whole body, arms only and legs only. Swimming velocity was calculated from a maximal bout of 50 m front crawl. Height of CMJ did not correlate with any of the studied variables. There were positive and moderate-strong associations between the work during CMJ and mean propulsive power in squat with tethered forces during whole body and legs only swimming. Mean propulsive power of bench press and lat pull down presented positive and moderate-strong relationships with mean force production in whole body and arms only. Swimming performance is related with mean power of lat pull down back. So, lat pull down back is the most related dry land test with swimming performance; bench press with force production in water arms only; and work during CMJ with tethered forces legs only.

Publisher

Year

Volume

29A

Pages

105-112

Physical description

Dates

published
1 - 9 - 2011
online
4 - 10 - 2011

Contributors

  • University of Pablo de Olavied, Seville, Spain
author

References

  • Adams TA, Martin RB, Yeater RA, Gilson KA. Tethered force and velocity relationships. Swimming Technique, 1983; Nov 83-Jan 84: 21-26.
  • Aspenes S, Kjendlie PL, Hoff J, Helgerud J. Combined strength and endurance training in competitive swimmers. J Sports Sci Med, 2009; 8:357-365.[PubMed]
  • Badillo JJ, Marques MC. Relationship between kinematic factors and countermovement jump height in trained track and field athletes. J Strength Cond Res, 2010; 24(12): 3443-3447.[Crossref][WoS]
  • Badillo JJ, Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 2010; 31(5): 347-352[WoS][Crossref]
  • Barbosa T, Bragada J, Reis V, Marinho D, Carvalho C, Silva A. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sports, 2010; 13: 262-269.[WoS][Crossref]
  • Bencke J, Damsgaard R, Saekmose A, Jorgensen P, Jorgensen K, Klausen K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scand J Med Sci Spor, 2002; 12: 171-178.[Crossref]
  • Christensen CL, Smith GW. Relationship of maximum sprint speed and maximal stroking force in swimming. J Swimming Res, 1987; 3(2): 18-20.
  • Costill DL, Rayfield F, Kirwan J, Thomas R. A computer based system for the measurement of force and power during front crawl swimming. J Swimming Res, 1986; 2: 16-19.
  • Crowe SE, Babington JP, Tanner DA, Stager JM. The relationship of strength to dryland power, swimming power, and swimming performance. Med Sci Sports Exerc, 1999; 31(5): S255.[Crossref]
  • Dopsaj M, Matkovic I, Thanopoulos V, Okicic T. Reliability and validity of basic kinematics and mechanical characteristics of pulling force in swimmers measured by the method of tethered swimming with maximum intensity of 60 seconds. Physical Education & Sport, 2003; 1(10): 11-12.
  • Fomitchenko TG. Relationship between sprint speed and power capacity in different groups of swimmers. In K. Keskinen, P. Komi, & A. Hollander (Eds.), Biomechanics and medicine in swimming VIII. Jyvaskyla: Gummerus Printing, 1999: 203-207.
  • Garrido N, Marinho DA, Barbosa TM, Costa AM, Silva AJ, Pérez-Turpin JA, Marques MC. Relationships between dry land strength, power variables and short sprint performance in young competitive swimmers. Journal of Human Sport & Exercise, 2010; 5(2): 240-249.
  • Girold S, Maurin D, Dugue B, Chatard JC, Millet G. Effects of dry-land vs. resisted- and assisted-sprint exercises on swimming sprint performances. J Strength Cond Res, 2007; 21: 599-605.
  • Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance. Brit J Sport Med, 1992; 26(3): 151-155.[Crossref]
  • Hopper RT, Hadley C, Piva M, Bambauer. Measurement of power delivered to an external weight. In A.P. Hollander, P.A. Huijing, & G. Groot (Eds.), Biomechanics and Medicine in Swimming IV. Champaign, Illinois: Human Kinetics, 1983: 113-119.
  • Johnson RE, Sharp RL, Hendrick MS. Relationship of swimming power and dryland power to sprint freestyle performance: a multiple regression approach. J Swim Res, 1993; 9: 10-14.
  • Keskinen KL, Tilli LJ, Komi PV. Maximum velocity swimming: interrelationships of stroking characteristics, force production and anthropometric variables. Scand J Med Sci Spor, 1989; 11: 87-92.
  • Keskinen OP, Keskinen KL, Mero AA. Effect of pool length on blood lactate, heart rate, and velocity in swimming. Int J Sports Med, 2007; 28: 407-413.[WoS][PubMed][Crossref]
  • Kjendlie PL, Thorsvald K. A tethered swimming power test is highly reliable. Portuguese Journal of Sport Sciences, 2006; 6(S2): 231-233.
  • Magel JR. Propelling force measured during tethered swimming in the four competitive swimming styles. Res Q, 1970; 41(1): 68-74.[PubMed]
  • Maglischo CW, Maglischo EW. Tethered and nontethered crawl swimming. In J. Terauds, K. Barthels, E. Kreighbaum, R. Mann, J. Crakes, C.A.D. Mar (Eds.), Proceedings of the ISBS: sports biomechanics, 1984: 163-176.
  • Marques MC, van den Tillaar R, Vescovi JD, Badillo JJ. Changes in strength and power performance in elite senior female professional volleyball players during the in-season: a case study. J Strength Cond Res, 2008; 20: 563-571.[WoS]
  • Medina L, Badillo JJ. Velocity loss and an indicator or neuromuscular fatigue during resistance training. Med Sci Sports Exerc, 2011; Post Acceptance.[WoS]
  • Morouço P, Keskinen KL, Vilas-Boas JP, Fernandes RJ. Relationship between tethered forces and the four swimming techniques performance. J Appl Biomech, 2011; 27(2):161-169.[PubMed]
  • Rohrs DM, Stager JM. Evaluation of anaerobic power and capacity in competitive swimmers. J Swim Res, 1991; 7(3): 12-16.
  • Sharp RL, Troup JP, Costill DL. Relationship between power and sprint freestyle swimming. Med Sci Sports Exerc, 1982; 14: 53-56.[PubMed][Crossref]
  • Stager JM, Coyle MA. Energy Systems. In J. Stager & D. Tanner (Eds.), Swimming - Handbook of Sports Medicine and Science. Massachusetts: Blackwell Science, 2005: 1-19.
  • Strzala M, Tyka A, Krezalek. Swimming technique and biometric and functional indices of young swimmers in relation to front crawl swimming velocity. Hum Movement, 2007; 8(2): 112-119.
  • Strzala M, Tyka A. Physical endurance, somatic indices and swimming technique parameters as determinants of front crawl swimming speed at short distances in young swimmers. Medicina Sportiva, 2009; 13: 99-107.[Crossref]
  • Swaine IL, Hunter AM, Carlton KJ, Wiles JD, Coleman D. Reproducibility of limb power outputs and cardiopulmonary responses to exercise using a novel swimming training machine. Int J Sports Med, 2010; 31: 854-859.[PubMed][Crossref]
  • Swaine IL. Arm and leg power output in swimmers during simulated swimming. Med Sci Sports Exerc, 2000; 32: 1288-1292.[PubMed][Crossref]
  • Tanaka H, Costill DL, Thomas R, Fink WJ, Widrick JJ. Dry-land resistance training for competitive swimming. Med Sci Sports Exerc, 1993; 25: 952-959.[PubMed]
  • Taylor SR, Stratton G, MacLaren DPM, Lees A. A longitudinal study of tethered swimming force in competitive age group swimmers. Portuguese J Sport Sci, 2003a; 3(2): 75-78.
  • Taylor SR, MacLaren D, Stratton G, Lees A. The effects of age, maturation and growth on tethered swimming performance. In J.C. Chatard (Ed.), Biomechanics and Medicine in Swimming IX. Saint-Étienne, 2003b: 185-190.
  • Wilke K, Madsen O. Coaching the Young Swimmer. Sports Support Syndicate, 1990.
  • Yeater RA, Martin RB, White MK, Gilson KH. Tethered swimming forces in the crawl, breast and back strokes and their relationship to competitive performance. J Biomech, 1981; 14(8): 527-537.[PubMed][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10078-011-0065-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.