PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 27 | 45-54
Article title

The influence of short-term high altitude training on inflammatory and prooxidative-antioxidative indices in alpine ski athletes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Exposure of alpine skiing athletes, while training, at altitude hypoxia and low ambient temperature can modify the response of the immune system and increase reactive oxygen and nitrogen species (RONS) generation. The aim of this study was to evaluate the impact of six day training model "live low - train high" on selected indicators of immune and antioxidant-prooxidant balance of alpine skiing competitors. The study was performed in 7 men, alpine skiers, who underwent 6-day training at Kaunertal glacier (3160 m). Before departure to glacier training, and after returning to sea level participants underwent series of tests. Somatic characteristics, anaerobic exercise capacity, blood morphological parameters and concentrations of interleukin 6 (IL-6), C-reactive protein (hsCRP), thyroid stimulating hormone (TSH), thiobarbituric acid reactive substances (TBARS), total antioxidant status (TAS), total iron (Fe) and total iron binding capacity (TIBC) were assessed. High altitude training has led to a significant increase in anaerobic capacity (p<0.05) and serum concentrations of IL-6 and hsCRP (p<0.05). A negative correlation among the difference in iron (ΔFe) concentration between two study terms and the change of hsCRP levels was also found (p<0.05). Alpine training conditions led to a slight increase in immunological indices concentration in studied skiers. However, it did not cause any significant change in prooxidant-antioxidant balance, which could be related to earlier anaerobic training adaptation.
Publisher

Year
Volume
27
Pages
45-54
Physical description
Dates
published
1 - 3 - 2011
online
6 - 4 - 2011
Contributors
  • Department of Various Sports and Camps Organization, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
author
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
author
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
author
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
author
  • Chair of Physiology, Biochemistry and Hygiene, University School of Physical Education in Poznań, Królowej Jadwigi St. 27/39, 61-871 Poznań, Poland
References
  • Bacharach DW, Duvillard SP. Intermediate and long-term anaerobic performance of elite Alpine skiers. Med Sci Sports Exerc, 1995; 27(3): 305-309[PubMed]
  • Bailey DM, Davies B, Young IS, Hulliin DA, Seddon PS. A potential role for free radical-mediated skeletal muscle soreness in the pathophysiology of acute mountain sickness. Aviatione Space Environ Medicine, 2001; 72: 513-521
  • Bakonyi T, Radak Z. High altitude and free radicals. J Sci Med Sport, 2004, 3, 64-69
  • Bar-Or O. The Wingate anaerobic test: An update on methodology, reliability and validity. Sports Medicine, 1987; (4): 381-394
  • Basu M, Pal K, Malhotra AS., Prasad R, Sawhney RC. Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol, 1995; 39: 17-21[Crossref][PubMed]
  • Beneke R, Pollmann C, Bleif I, Leithäuser RM, Hütler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol 2002; 87: 388-392[PubMed]
  • Buege J, Aust SD. The thiobarbituric acid assy. In: Rice-Evans CA, Diplock AT, Symons MCR. (Eds) Techniques in Free Radical Research. Elservier, Amsterdam, London, New York, Tokyo, 1991; 147-148
  • Castellani JW, Brenner IKM, Rhind SG. Cold eposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc, 2002; 34(12): 2013-2020[Crossref][PubMed]
  • Cazzola R, Russo-Volpe S, Cervato G, Cestaro B. Biochemical assessment of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Invest, 2003; 33: 924-930[Crossref]
  • Chapman RF, Stickford JL, Levine BD. Altitude training considerations for the winter sport athlete. Exp Physiol, 2010; 95: 411-421[PubMed][WoS][Crossref]
  • Facco M, Zilli C, Siviero M, Ermolao A, Travain G, Baesso I, Bonamico S, Cabrelle A, Zaccaria M, Agostini C. Modulation of immune response by the acute and chronic exposure to high altitude. Med Sci Sports Exerc, 2005; 37 (5): 768-774[PubMed][Crossref]
  • Feelders RA, Vreugdenhil G, Eggermont AMM, Kuiper-Kramer PA, van Eijk HG, Swaak AJG. Regulation of iron metabolism in the acute-phase response: interferon γ and tumour necrosis factor α induce hypoferraemia, ferritin production and a decrease in circulating transferrin receptors in cancer patients. Eur J Clin Invest, 1998; 28: 520-527[Crossref][PubMed]
  • Hagobian TA, Jacobs KA, Subudhi AW, Fattor JA, Rock PB, Muza SR, Fulco CS, Braun B, Grediagin A, Mazzeo RS, Cymerman A, Friedlander AL. Cytokine responses at high altitude: effects of exercise and antioxidants at 4300 m. Med Sci Sports Exerc, 2006; 38(2): 276-285
  • Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, Hautmann H, Endres S, Toepfer M. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and c-reactive protein. Cytokine, 2000; 12: 246-252
  • Ji LL, Radak Z, Goto S. (2008) Hormesis and Exercise: How the Cell Copes with Oxidative stress. Am J Pharm Toxicol, 2008; 3(1): 41-55
  • Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gardette B, Jammes Y. Operation Everest III (Comex'97): the effect of simulated sever hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resscitation, 2001; 49: 307-314[Crossref]
  • Kemna EHJM, Tjalsma H, Willems HL, Swinkels DW. Hepcidin: from discovery to differential diagnosis. Haematologica, 2008; 93(1): 90-97.DOI:10.3324/haematol.11705[PubMed][Crossref][WoS]
  • Klausen T, Olsen NV, Poulsen TD, Richalet JP, Pedersen BK., Hypoxemia increases serum interleukin-6 in humans. Eur J Appl Physiol, 1997; 76: 480-482
  • Kruger TE. Immunomodulation of pheripheral lymphocytes by hormones of the hypothalamus-pituitary-thyroid axis. Adv Neuroimmunol, 1996; 6: 387-395[Crossref]
  • Ma Y, Freitag P, Zhou J, Brüne B, Frede S, Fandrey J. Thyroid hormone induces erythropoietin gene expression through augmented accumulation of hypoxia-inducible factor-1. Am J Physiol Regul Integr Comp Physiol., 2004; 287: R600-R607
  • Magalhães J, Ascensão A, Soares JMC, Ferreira R, Neuparth MJ, Marques F, Duarte JA. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. J Appl Physiol, 2005; 99: 1247-1253[PubMed][Crossref]
  • Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, Mitrakou A, Mastorakos G, Papassotriou I, Taxildaris K, Kouretas D. Oxidative stress biomarkers responses to physical overtraining: implication for diagnosis. Free Radic Biol Med, 2007; 43: 901-910[WoS]
  • Moller P, Loft S, Lundby C, and Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J 2001; 15: 1181-1186[Crossref][PubMed]
  • Nagata M, Arimitsu N, Ito T, Sekimizu K. Antioxidant N-acetylcysteine inhibits erythropoietin-induced differentation of erythroid progenitors derived from mouse fetal liver. Cell Biol Int, 2007; 31: 252-256[Crossref]
  • Otani S, Kusagaya H. Changes in cytokines at extreme surroundings in Antarctica. Yonago Acta Medica, 2003; 46: 29-34
  • Persijn JP, van der Slik W, Riethorst A. Determination of serum iron and latent iron-binding capacity (LIBC). Clin Chim Acta, 1971; 35(1): 91-98[Crossref]
  • Pialoux V, Mounier R, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Brugniaux J, Coudert J, Fellmann N. Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes. Int J Sports Med, 2009; 30: 87-93[Crossref][WoS][PubMed]
  • Pottgieser T, Ahlgrim C, Ruthardt S, Dickhuth H-H, Schumacher YO. Hemoglobin mass after 21 days of conventional altitude training at 1816 m. J Sci Med Sport, 2009; 12: 673-675
  • Vasilaki A, McArdle F, Iwanejko JM, McArdle A. Adaptative responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev, 2006; 127: 830-839[Crossref]
  • Vogt M, Hoppeler H. Is hypoxia training good for muscles and exercise performance? Progress in Cardiovascular Diseases, 2010; 52: 525-533[Crossref][WoS]
  • Vyoral D, Petrák J. Hepcidin: a direct link between iron metabolism and immunity. Int J Biochem Cell Biol, 2005; 37(9): 1768-1773[Crossref][PubMed]
  • Walsh NP, Whitham M. Exercising in environmental extremes. Sports Med, 2006; 36(11): 941-976[PubMed][Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10078-011-0004-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.