Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2008 | 20 | 37-50

Article title

Force Coordination in Object Manipulation


Title variants

Languages of publication



Purpose: The purpose of this review is to present our recent findings related to the studies of hand function based on the coordination of forces exerted against hand-held objects.Basic procedures: A novel device has been developed for recording grip (GF; acting perpendicularly at the hand-object contact) and load force (LF; acting tangentially) during uni- and bimanual manipulation tasks performed under either static or dynamic conditions. Both healthy participants and neurological patients were tested. The outcome measures were obtained from the task performance (i.e., the ability to exert accurate LF profiles), GF-LF coordination and GF modulation.Main findings: The method applied proved to not only to be both reliable and valid, but also sufficient to detect differences between the dominant and non-dominant hand, as well as between healthy participants and mildly involved neurological patients. Marked differences in most of the depended variables were also detected between unidirectional and bi-direction tasks (i.e., in the tasks where LF acts in one and in two alternating directions). The later finding could not be based neural mechanisms known for their role in manipulative actions, such as on employing ad hoc muscle synergies or on the afferent activity of skin mechanoreceptors.Conclusions: The employed methodological approach can be applied not only to explore various manipulation activities, but also to serve as a basis for future development of specific clinical tests for populations that demonstrate impaired hand function.


hand   function   grasp   grip   load   test  







Physical description


1 - 1 - 2008
13 - 1 - 2009


  • Department of Health, Nutrition and Exercise Sciences, University of Delaware, 547 S. College Ave, Newark, DE 19711, USA


  • Augurelle A. S., Smith A. M., Lejeune T., Thonnard J. L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol, 2003. 89, 665-71.[PubMed]
  • Babin-Ratte S., Sirigu A., Gilles M., Wing A. Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res, 1999. 128, 81-5.
  • Bagesteiro L. B., Sainburg R. L. Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol, 2002. 88, 2408-21.[Crossref][PubMed]
  • Bagesteiro L. B., Sainburg R. L. Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol, 2003. 90, 1503-13.[PubMed][Crossref]
  • Benice T. S., Lou J. S., Eaton R., Nutt J. Hand coordination as a quantitative measure of motor abnormality and therapeutic response in Parkinson's disease. Clin Neurophysiol, 2007. 118, 1776-1784.
  • Birznieks I., Jenmalm P., Goodwin A. W. Johansson R. S., Encoding of direction of fingertip forces by human tactile afferents. J Neurosci, 2001. 21, 8222-8237.[PubMed]
  • Blakemore S. J., Goodbody S. J., Wolpert D. M. Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci, 1998. 18, 7511-8.[PubMed]
  • Cole K. J., Abbs J. H. Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol, 1988. 60, 1513-22.
  • Danion F. The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object. Clin Neurophysiol, 2007. 118, 146-54.
  • de Freitas P. B., Jaric S. Ongoing cutaneous sensor information could not be important for force control of continuous manipulation tasks. in preparation.
  • de Freitas P. B., Krishnan V., Jaric S. Force coordination in static manipulation tasks: effects of the change in direction and handedness. Exp Brain Res, 2007. 183, 487-497.
  • de Freitas P. B., Markovic G., Krishnan V., Jaric S. Force coordination in static manipulation: Discerning the contribution of muscle synergies and cutaneous afferents. Neurosci Lett, 2008. 434, 234-239.
  • Dun S., Kaufmann R. A., Li Z. M. Lower median nerve block impairs precision grip. J Electromyogr Kinesiol, 2007. 17, 348-354.[PubMed][Crossref]
  • Fellows S. J., Noth J. Grip force abnormalities in de novo Parkinson's disease. Mov Disord, 2003. 19, 560-565.
  • Fellows S. J., Noth J., Schwarz M. Precision grip and Parkinson's disease. Brain, 1998. 121 (Pt 9), 1771-84.
  • Ferrand L., Jaric S. Force coordination in static bimanual manipulation: Effect of handedness. Motor Control, 2006. 10, 359-370.[PubMed]
  • Flanagan J. R., Tresilian J., Wing A. M. Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett, 1993. 152, 53-6.
  • Flanagan J. R., Wing A. M. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res, 1993. 95, 131-43.
  • Flanagan J. R., Wing A. M. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci, 1997. 17, 1519-28.[PubMed]
  • Flanagan J. R., Wing A. M. The Stability of Precision Grip Forces during Cyclic Arm Movements with a Hand-Held Load. Exp Brain Res, 1995. 105, 455-464.[PubMed]
  • Freitas P. B., Jr., Krishnan V., Jaric S. Elaborate force coordination of precision grip could be generalized to bimanual grasping techniques. Neurosci Lett, 2007. 412, 179-84.
  • Gandevia S. C., McCloskey D. I. Changes in motor commands, as shown by changes in perceived heaviness, during partial curarization and peripheral anaesthesia in man. Journal of Physiology, 1977. 272, 673-89.
  • Gandevia S. C., McCloskey D. I. Effects of related sensory inputs on motor performances in man studied through changes in perceived heaviness. Journal of Physiology, 1977. 272, 653-72.
  • Gao F., Latash M. L., Zatsiorsky V. M. Similar motion of a hand-held object may trigger nonsimilar grip force adjustments. J Hand Ther, 2007. 20, 300-307.[Crossref][PubMed]
  • Garnett R., Stephens J. A. Changes in the Recruitment Threshold of Motor Units Produced by Cutaneous Stimulation in Man. J Physiol, 1981. 311, 463-473.
  • Garnett R., Stephens J. A. The Reflex Responses of Single Motor Units in Human 1St Dorsal Interosseous Muscle Following Cutaneous Afferent Stimulation. J Physiol, 1980. 303, 351-364.
  • Gordon A. M., Quinn L., Reilmann R., Marder K. Coordination of prehensile forces during precision grip in Huntington's disease. Exp Neurol, 2000. 163, 136-148.
  • Gysin P., Kaminski T. R., Gordon A. M. Coordination of fingertip forces in object transport during locomotion. Exp Brain Res, 2003. 149, 371-379.
  • Hermsdorfer J., Hagl E., Nowak D. A., Marquardt C. Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol, 2003. 114, 915-929.
  • Ingvarsson P. E., Gordon A. M., Forssberg H. Coordination of manipulative forces in Parkinson's disease. Exp Neurol, 1997. 145, 489-501.
  • Jaric S., Collins J. J., Marwaha R. Russell E., Interlimb and within limb force coordination in static bimanual manipulation task. Exp Brain Res, 2006. 168, 88-97.
  • Jaric S., Knight C. A., Collins J. J., Marwaha R. Evaluation of a method for bimanual testing coordination of hand grip and load forces under isometric conditions. J Electromyogr Kinesiol, 2005. 15, 556-63.
  • Jaric S., Russell E. M., Collins J. J., Marwaha R. Coordination of hand grip and load forces in uni- and bidirectional static force production tasks. Neurosci Lett, 2005. 381, 51-6.
  • Jenmalm P., Goodwin A. W., Johansson R. S. Control of grasp stability when humans lift objects with different surface curvatures. J Neurophysiol, 1998. 79, 1643-52.
  • Johansson R. S., Birznieks I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci, 2004. 7, 170-177.[Crossref][PubMed]
  • Johansson R. S., Hger C., Backstrom L. Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res, 1992. 89, 204-13.[PubMed][Crossref]
  • Johansson R. S., Vallbo A. B. Tactile Sensory Coding in the Glabrous Skin of the Human Hand. Trends Neurosci, 1983. 6, 27-32.[Crossref]
  • Johansson R. S., Westling G. Programmed and Triggered Actions to Rapid Load Changes during Precision Grip. Exp Brain Res, 1988. 71, 72-86.
  • Johansson R. S., Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res, 1984. 56, 550-64.
  • Johansson R. S., Westling G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res, 1987. 66, 141-54.
  • Johansson R. S., Westling G., Significance of cutaneous input for precise hand movements. Electroencephalogr Clin Neurophysiol Suppl, 1987. 39, 53-7.
  • Krishnan V., de Freitas P. B., Jaric S. Impaired Object Manipulation in Mildly Involved Individuals with Multiple Sclerosis. Motor Control, 2008. 12, 3-20.[PubMed]
  • Latash M. L., Scholz J. P., Schoner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev, 2002. 30, 26-31.[PubMed][Crossref]
  • Latash M. L., Scholz J. P., Schoner G. Toward a new theory of motor synergies. Motor Control, 2007. 11, 276-308.[PubMed]
  • Marsden C. D., Rothwell J. C., Traub M. M. Effect of thumb anaesthesia on weight perception, muscle activity and the stretch reflex in man. Journal of Physiology, 1979. 294, 303-15.
  • Marwaha R., Hall S. J., Knight C. A., Jaric S. Load and grip force coordination in static bimanual manipulation tasks in multiple sclerosis. Motor Control, 2006. 10, 160-177.[PubMed]
  • Monzee J., Lamarre Y., Smith A. M. The effects of digital anesthesia on force control using a precision grip. J Neurophysiol, 2003. 89, 672-83.[PubMed]
  • Nowak D. A., Glasauer S., Hermsdorfer J. How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 2004. 127, 182-92.
  • Nowak D. A., Glasauer S., Meyer L., Mait N., Hermsdorfer J. The role of cutaneous feedback for anticipatory grip force adjustments during object movements and externally imposed variation of the direction of gravity. Somatosens Mot Res, 2002. 19, 49-60.[PubMed][Crossref]
  • Nowak D. A., Hermsdorfer J. Digit cooling influences grasp efficiency during manipulative tasks. European Journal of Applied Physiology, 2003. 89, 127-33.
  • Nowak D. A., Hermsdorfer J., Glasauer S., Philipp J., Meyer L. Mai N. The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci, 2001. 14, 756-62.[PubMed][Crossref]
  • Nowak D. A., Hermsdorfer J., Marquardt C., Fuchs H. H. Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res, 2002. 145, 28-39.
  • Nowak D. A., Hermsdorfer J., Marquardt C., Topka H. Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility? Clin Neurophysiol, 2003. 114, 472-87.
  • Nowak D. A., Hermsdorfer J. Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res, 2006.[PubMed]
  • Nowak D. A., Hermsdorfer J. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neuroscience Research, 2003. 47, 65-72.
  • Nowak D. A., Hermsdorfer J. Timmann D., Rost K., Topka H. Impaired generalization of weightrelated information during grasping in cerebellar degeneration. Neuropsychologia, 2005. 43, 20-7.[PubMed][Crossref]
  • Pare M., Carnahan H., Smith A. M. Magnitude estimation of tangential force applied to the fingerpad. Exp Brain Res, 2002. 142, 342-8.
  • Rost K., Nowak D. A., Timmann D., Hermsdorfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol, 2005. 116, 1405-14.
  • Sainburg R. L. Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev, 2005. 33, 206-13.[PubMed][Crossref]
  • Schwarz M., Fellows S. J., Schaffrath C., Noth J. Deficits in sensorimotor control during precise hand movements in Huntington's disease. Clin Neurophysiol, 2001. 112, 95-106.[Crossref]
  • Srinivasan M. A., Whitehouse J. M., LaMotte R. H. Tactile detection of slip: surface microgeometry and peripheral neural codes. J Neurophysiol, 1990. 63, 1323-32.[PubMed]
  • Thonnard J. L., Detrembleur C., VandenBergh P. Y. K. Assessment of hand function in a patient with chronic sensory demyelinating neuropathy. Neurology, 1997. 49, 253-257.
  • Wenzelburger R., et al. Force overflow and levodopa-induced dyskinesias in Parkinson's disease. Brain, 2002. 125, 871-879.
  • Westling G., Johansson R. S. Factors Influencing the Force Control during Precision Grip. Exp Brain Res, 1984. 53, 277-284.[PubMed]
  • Westling G., Johansson R. S. Factors influencing the force control during precision grip. Exp Brain Res, 1984. 53, 277-84.[PubMed]
  • Westling G., Johansson R. S. Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res, 1987. 66, 128-40.[PubMed]
  • Wheat H. E., Salo L. M., Goodwin A. W. Human ability to scale and discriminate forces typical of those occurring during grasp and manipulation. J Neurosci, 2004. 24, 3394-401.[PubMed][Crossref]
  • Zatsiorsky V. M., Gao F., Latash M. L. Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res, 2005. 162, 300-308.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.