Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 67 | 1-2 | 1-29

Article title

Some aspects on the history of thermal analysis

Content

Title variants

Languages of publication

EN

Abstracts

EN
The short survey covers invention and development of thermal and related analytical methods: calorimetry, thermoporometry, dilatometry, thermogravimetry, sorptometry, hygrometry.

Keywords

Year

Volume

67

Issue

1-2

Pages

1-29

Physical description

Dates

published
1 - 12 - 2012
online
25 - 01 - 2014

Contributors

  • Schlesierstraße 5, D-61381 Friedrichsdorf, Germany. Formerly: Battelle-Institut e.V., Frankfurt am Main, Germany
author
  • 42 Tanton Road, Stokesley, Middlesbrough, TS9 5HR, UK, Formerly: Teesside University, School of Science & Engineering, Middlesbrough, UK

References

  • [1] O. Jäntti, J. Junttila, and E. Yrjänheikki, Mikropunnitusajan Lyhentämisestä Ekstrapolaatiomenetelmällä. (On curtailing the microweighing time by an extrapolation method), Suomen Kemistilehti, A 43, 214, (1970).
  • [2] O. Jäntti, J. Junttila, and E. Yrjänheikki, On curtailing the microweighing time by an extrapolation method, [in:] Progress in Vacuum Microbalance Techniques, (T. Gast and E. Robens, Eds.), Heyden: London. pp. 345-353, (1972).
  • [3] J.A. Poulis, et al., General application of Jäntti's method for the fast calculation of sorption equilibrium, J. Therm. Anal. Cal., 76(2), 583, (2004).
  • [4] E. Robens, et al., Standardization of sorption measurements and reference materials for dispersed and porous solids, [in:] Adsorption and its Application in Industry and Environmental Protection. Vol. 1: Application in Industry, (A. Dabrowski, Ed.), Elsevier: Amsterdam. pp. 95-116, (1999).
  • [5] P. Klobes, and E. Robens, Standardization of the Pore Size Distribution. Particle & Particle Systems Characterization, Particle & Particle Systems Characterization, (2012).
  • [6] A. Tian, Bull. Soc.Chim. France, 33(4), 427, (1923).
  • [7] E. Calvet and C.R. Hebd. Seances Acad. Sci., 226,1702, (1948).
  • [8] E. Calvet and H. Prat, Récents Progrès en Microcalorimétrie, Paris Dunod, (1958).
  • [9] E. Calvet and H. Prat, Recent Progress en Microcalorimetry.Oxford: Pergamon Press, (1963).
  • [10] J.U. Keller and W. Zimmermann, Kinetic Analysis of Sensor-Gas- Calorimeters as Linear Passive Systems, (2000).
  • [11] L. Taylor, Electromagnetic Calorimeter. http://cms.web.cern.ch/ news/electromagnetic-calorimeter, Compact Moon Solenoid at Cern's LHC, (2011).
  • [12] M.R. Landry, Thermoporometry by differential scanning calorimetry: experimental considerations and applications, Thermochimica Acta, 433(1-2), 27, (2005).
  • [13] Wikipedia, Thermoporometry and cryoporometry. http://en.wikipedia. org/wiki/Thermoporometry_and_cryoporometry, (2012).
  • [14] M. Brun, et al., A new method for the simultaneous determination of the size and the shape of pores: The thermoporometry, Thermochimica Acta, 21, 59, (1977).
  • [15] E. Robens, B. Benzler, and K.K. Unger, Comparison of sorptometric and thermoporometric measurements on porous glass and some others, J. Therm. Anal. Cal., 56, 323, (1999).[Crossref]
  • [16] E. Robens et al., Gravimetric, Volumetric and Calorimetric Studies of the Surface Structure of Portland Cement, J. Therm. Anal. Cal., 62, 435, (2000).[Crossref]
  • [17] E. Robens et al., Investigation of characterizing methods for the microstructure of cement paste, Cement and Concrete Research, 32(1), 87, (2002).
  • [18] J. Mitchell et al., Nuclear Magnetic Resonance Cryoporometry, Phys. Rep., 461, 1, (2008).
  • [19] O.V. Petrov and I. Furo, NMR cryoporometry: Principles applications and potential, Prog. Nucl. Mag. Res. Sp., 54 (2), 97, (2009). 20] W.-J. 's Gravesande, Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam, Leiden, (1720).[Crossref]
  • [21] W.-J. s'Gravesande and J.T.t. Desaguliers, Physices elementa mathematica, experimentis confirmata. English. Mathematical elements of natural philosophy, confirm'd by experiments, or, An introduction to Sir Isaac Newton's philosophy, fifth edition, 5 ed., London: J. Senex, W. Innys and R. Maney, and T. Longman, (1737).
  • [22] E. Robens et al., Measurement of water vapour sorption and humidity - A survey on measuring methods and standards, Annals of the Polish Chemical Society, 2 / II, 670, (2003).
  • [23] E. Robens et al., Water vapour sorption and humidtity - A survey on measuring methods and standards, [in:] Humidity Sensors: Types, Nanomaterials and Environmental Monitoring, (C.T. Okada, Ed.), Nova Science Publishers, Inc.: Hauppauge, NY. pp. 1-87, (2011)
  • [24] Bible, The Book of Judges., [in:] Bible. p. Chap. VI, vv. 33-40.
  • [25] D. Brunt, Ann. Rep. East Mailing Research Station, Kent, England for 1958, 41, (1959).
  • [26] C.H. Giles, Gideon's Fleece Test. The Earliest Recorded Vapor Phase Adsorption Experiment?, J. Chem. Education, 39, 584, (1962).
  • [27] E. Gerland and F. Traumüller, Geschichte der physikalischen Experimentierkunst, Leipzig, (1899).
  • [28] N. Cusanus, Idiota de Staticis Experimentis, Dialogus, Codex Cusanus 1456/64, Straßburg Folio, 135r, (1450).
  • [29] L.B. Alberti, L'architettura, Padua, Firenze, (1483/1485)
  • [30] L. da Vinci, Codex atlanticus - Saggio del Codice atlantico, (Aretin, Ed.), vol. fol. 249 verso-a + fol. 8 verso-b., Milano, (1872).
  • [31] L. da Vinci, Catalogue "Les Mots dans le Dessin" of the Cabinet des Dessin, Paris Louvre, (1986).
  • [32] E. Robens and A. Dobrowski, Extension of the measuring range of balances, J. Therm, Anal. Cal., 86(1), 17, (2006).[Crossref]
  • [33] E. Robens and K. Rübner, Gravimetrische Wasserdampfsorptionsund Feuchtemessung an Feststoffen, GIT Z. Labortechnik, 47(10), 1046, (2003).
  • [34] E. Robens et al., Measurement of water vapour sorption and humidity. A survey on measuring methods and standards, ICTAC News, 38 (1), 39, (2005).
  • [35] R. Wernecke, Industrielle Feuchtemessung, Weinheim: Wiley - VCH, (2003).
  • [36] G. Sandstede and E. Robens, Automatisierte Apparatur zur gravimetrischen Bestimmung der spezifischen Oberfläche und der Porengröße, Chem.-Ing.-Tech., 34(10), 708, (1962).
  • [37] E. Robens, S.A.A. Jayaweera, and S. Kiefer, Balances - Instruments, Manufacturers, History, Heidelberg: Springer, (2013).
  • [38] W.F. Hemmingerand H.K. Cammenga, Methoden der thermischen Analyse, Heidelberg: Springer, (1989).
  • [39] E. Robens and G. Walter, Thermogravimetrische Arbeitsmethoden.Sprechsaal, 104(10), 426, (1971).
  • [40] E. Robens and G. Walter, Thermogravimetrische Arbeitsmethoden.Sprechsaal, 104(11), 489, (1971).
  • [41] M. Vitruvius Pollio, De Architectura, Vol. II/III. 33 - 14 BC, Rome.
  • [42] R.C. Mackenzie, Thermochimica Acta, 75, 251, (1984).
  • [43] C. Duval, C, Inorganic Thermogravimetric Analysis, (1953), Amsterdam: Elsevier, 1961.
  • [44] S. Iwata, Über die Entwicklung der Thermowaage, besonders in Japan, Bonn: Chemischen Institut der Universität Bonn, (1961).
  • [45] S. Iwata, Soil-Water Interaction, 2nd ed., New York: Dekker, (1995).
  • [46] C.J. Keattch, An Introduction to Thermogravimetry, London: Heyden/Sadtler, (1969).
  • [47] C.J. Keattch, The History and Development of Thermogravimetry, University of Salford: Salford, (1977).
  • [48] C.J. Keattch, Studies in the history and development of thermogravimetry, J. Therm, Anal. Cal.,44(5), (1995).[Crossref]
  • [49] J. Šesták, P. Hubík, and J.J. Mareš, Historical roots and development of thermal analysis and calorimetry, in Glassy, Amorphous and Nano-Crystalline Materials: Thermal Physics, Analysis, Structure and Properties, (J. Šesták, P. Hubík and J.J.Mareš, Eds.), Springer: Dordrecht, (2011).
  • [50] P. Holba and J. Šesták, Czechoslovak footprints in the development of methods of thermometry, calorimetry and thermal analysis, Ceramics - Silikáty, 56(2), 159, (2012).
  • [51] J. Šesták, Some historical aspects of thermal analysis: Origins of THERMANAL and ICTA, Thermanal, 1, (2005).
  • [52] F. Emich, Einrichtung und Gebrauch der zu chemischen Zwecken verwendbaren Mikrowaagen., [in:] Handbuch der biochemischen Arbeitsmethoden., (E. Abderhalden, Ed.), Berlin/Wien. pp. 55-147, (1919).
  • [53] G. Gorbach, Die Mikrowaage, Mikrochemie, 20(2/3), 254, (1936).
  • [54] B.B. Cunningham, Microchemical methods used in nuclear research, Nucleonics, 5(5), 62, (1949).
  • [55] K.H. Behrndt, Die Mikrowaagen in ihrer Entwicklung seit 1886. Z. angew. Physik, 8(9), 453, (1956).
  • [56] R.S. Mikhail and E. Robens, Microstructure and Thermal Analysis of Solid Surfaces, Chichester: Wiley, (1983).
  • [57] C. Eyraud. and P. Rochas, Thermogravimetry and silk conditioning in Lyons. A little known story, Thermochimica Acta, 152, 1, (1989).
  • [58] W.F. Hemminger and K.-H. Schönborn, A nineteenth century thermobalance, Thermochimica Acta, 39, 321, (1980).
  • [59] C. Eyraud, E. Robens, and P. Rochas, Some comments on the history of thermogravimetry, Thermochimica Acta, 160, 25, (1990).
  • [60] K. Honda, On a Thermobalance. Science Reports of the Tôhoku University, Sendai Serie 1, 4, 97, (1915).
  • [61] K. Honda, Kinzoku no Kenkyu, 1, 543, (1924).
  • [62] F. Sabadvary and B.-G. E., J. Therm, Anal., 389, (1979).
  • [63] J. Šesták and J.J. Mares, From Caloric to Statmograph and polarography, J. Therm, Anal., 88(3), 1, (2007).
  • [64] M. Guichard, Bull. Soc. Chim. France, 33, 258, (1923).
  • [65] P. Dubois, Bull. Soc. Chim. France, 3, 1178, (1935).
  • [66] P. Chevenard, X. Waché, and R. de la Tullaye, Bull. Soc. Chim.France, 10, 41, (1944).
  • [67] C. Eyraud and I. Eyraud. Catalogue, [in:] 50e Expos. Soc. Fr.Physique, (1953).
  • [68] C. Eyraud and I. Eyraud, Laboratoires, 12, 13, (1955).
  • [69] W.A. de Keyser, Nature, 172, 364, (1953).
  • [70] J. Paulik and F. Paulik, Thermal Analysis, Part A: Simultaneous Thermoanalytical Examinations by Means of the Derivatograph, Thermal Analysis, (W.W. Wendlandt, Ed.), Amsterdam: Elsevier, (1981).
  • [71] J. Paulik and F. Paulik, Simultaneous thermoanalytical examination by means of the Derivatograph, [in:] Comprehensive Analytical Chemistry (W.W. Wendlandt, Ed.), Elsevier Amsterdam, (1981).
  • [72] Paulik, F., Special Trends in Thermal Analysis. 1995, Chichester: Wiley.
  • [73] G. Liptay, Atlas of Thermoanalytic Curves, Budapest, London: Akadémiai Kiadó and Heyden, 1971-1977,.
  • [74] F. Paulik, J. Paulik, and L. Erdey, Der Derivatograph. 1. Mitteilung, Z. Anal. Chem., 160, 241, (1957).
  • [75] F. Paulik, J. Paulik, and L. Erdey, Z. Anal. Chem.,160, 241, (1958).
  • [76] P. Staszczuk, Physicochemical properties of liquid-solid interfaces by means of controlled rate thermal analysis, Thermochimica Acta, 247, 169, (1994).
  • [77] J. Goworek and W. Stefaniak, Investigation on the porosity of silica gel by thermal desorption of liquids, Mat. Chem. Phys., 32, 244, (1992).
  • [78] J. Goworek and W. Stefaniak, Study of the porosity of carbonaceous materials and organic polymers by thermal analysis, J. Therm, Anal., 51, 541, (1998).[Crossref]
  • [79] J. Goworek and W. Stefaniak, A comparison of nitrogen adsorption data and thermogravimetric methods in the assessment of the pore size distribution of mesoporous silica gels, Journal of Porous Materials, 3, 121, (1996).
  • [80] P. Staszczuk, The studies of the heterogeneous properties of solid surfaces by means of the Derivatograph Q-1500D, J. Therm. Anal.Cal., 53, 597, (1998).
  • [81] A.W. Coats and J.P. Redfern, Nature, 201, 68, (1964).
  • [82] H. Barkia, H.L. Belkbir, and S.A.A. Jayaweera, Thermal analysis studies of oil shale residual carbon. J Thermal Analysis and Calorimetry, 2004. 76: p. 615-622.
  • [83] T. Berrajaa et al., Thermal analysis studies of the pyrolysis of Tarfaya oil shale, [in:] Carbon ’88 (B. McEnaney and T.J. James, Eds.), pp. 567-569, (1988).
  • [84] P. Staszczuk and D. Glazewski, Study of heterogeneous properties of solids by means of a special thermal analysis techniques, J.Therm. Anal. Cal., 55, 467, (1999).[Crossref]
  • [85] P. Staszczuk, et al., Total heterogeneity of Al2O3 surface, J. Therm.Anal. Cal., 71(2), 445, (2003).[Crossref]
  • [86] R. Berger, J. Gutmann, and R. Schäfer, Scanning probe methods: From microscopy to sensing, Bunsen Magazin, 2, 42, (2011).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10063-012-0001-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.