Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2008 | 63 | 73-86

Article title

Surface characterization of clay particles via dielectric spectroscopy


Title variants

Languages of publication



This work deals with the high frequency dielectric relaxation of clay (sodium montmorillonite, or NaMt) suspensions. By high frequency it is meant that the permittivity will be determined in the region where the Maxwell-Wagner-O'Konski relaxation takes place, roughly, the MHz frequency range. The applicability of dielectric determinations for the characterization of the electrical properties of these complex systems is demonstrated. In fact, standard electrophoresis measurements only allow to detect that the charge of the particles becomes slightly more negative upon increasing pH. Much more information is obtained from the high frequency electric permittivity for different concentrations of solids and pHs. From the characteristic frequencies of the relaxation it is possible to detect separate processes for parallel and perpendicular orientations of the clay platelets, modelled as oblate spheroids with a high aspect ratio. In addition, using a suitable model the surface conductivity of the clay particles can be estimated. Our data indicate that this quantity is minimum around pH 7, which is admitted as representative of the isoelectric point of the edges of the clay platelets. Data are also obtained on the amplitude (value of the relative permittivity at low frequency minus that at high frequency) of the relaxation, and it is found that it depends linearly on the volume fraction of solids, and that it is minimum at pH 5. These results are considered to be a manifestation of the fact that particle interactions do not affect the electric conduction inside the electric double layer, while the special behaviour at pH 5 is related to the existence of aggregates at pH 5, which increase the effective size of the particles and provoke a reduction of their effective conductivity.







Physical description


1 - 1 - 2008
5 - 3 - 2010


  • Department of Applied Physics, University of Granada, 18071 Granada, Spain
  • Department of Applied Physics, University of Granada, 18071 Granada, Spain
  • Drittes Physikalisches Institut, Universitat Goettingen, Goettingen, Germany


  • J. Lyklema, Fundamentals of Interface and Colloid Science, Academic Press. New York, Vol. II, (1995).[WoS]
  • R. J. Hunter Foundations of Colloid Science, Oxford Univ. Press. Oxford (2001).
  • S. S. Dukhin, B. V. Derjaguin In: E. Matijevic (Ed.) Surface and Colloid Science, Wiley, New York, Vol. 7 (1974).
  • A. V. Delgado, Interfacial Electrokinetics and Electrophoresis, Marcel Dekker. New York (2002).
  • R. W. O'Brien, L. R. White, J. Chem. Soc. Faraday Trans. 2, 74, 1607 (1978).
  • M. Minor, H. P. van Leeuwen, J. Lyklema, J. Colloid Inteface Sci. 206, 397 (1998).
  • B. R. Midmore, D. Diggins, R. J. Hunter, J. Colloid Interface Sci. 129, 153 (1989).
  • J. Lyklema, H. P. van Leeuwen, M. Minor, Adv. Colloid Interface Sci. 83, 33 (1999).
  • B. R. Midmore, R. J. Hunter, J. Colloid Interface Sci. 122, 521 (1998).
  • S. Ahualli, Ph. D. Thesis, University of Granada, Spain (2008).
  • C. Grosse, S. Pedrosa, V. N. Shilov, J. Colloid Interface Sci. 220, 31 (1999).
  • M. L. Jiménez, F. J. Arroyo, F. Carrique, A. V. Delgado, J. Phys. Chem. B. 107, 12192 (2003).
  • F. J. Arroyo, F. Carrique, M. L. Jiménez-Olivares, A. V. Delgado, J. Colloid Interface Sci. 229, 118 (2000).
  • J. C. Maxwell, Electricity and Magnetism, Dover. New York, Vol. I (1954).
  • K. W. Wagner, Arch. Elektrotech. 2, 371 (1914).
  • S. S. Dukhin, V. N. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, Wiley, New York (1974).
  • H. J. Van Olphen, An Introduction to Clay Colloid Chemistry, Wiley. New York (1977).
  • C. Grosse, In: (AV Delgado, Ed) Interfacial Electrokinetics and Electrophoresis, Marcel Dekker, New York, Ch. 11 (2000).
  • E. H. B. DeLacey, L. R. White, J. Chem. Soc. Faraday Trans. 2, 77, 2007 (1981).
  • C. T. O'Konski, J. Phys. Chem. 64: 605(1960).
  • C. S. Mangelsdorf, L. R. White, J. Chem. Soc. Faraday Trans. 94, 2441 (1998).
  • F. Carrique, F. J. Arroyo, M. L. Jiménez, A. V. Delgado, J. Chem. Phys. 118, 1945 (2003).
  • M. Fixman, J. Chem. Phys. 124, 214506 (2006).
  • J. A. Stratton, Electromagnetic Theory, McGraw-Hill (1941).
  • O. Göttmann, U. Kaatze, P. Petong, Meas. Sci. Technol. 7, 525 (1996).
  • C. J. F. Böttcher, P. Bordewijk, Theory of Electric Polarization, Elsevier Scientific, Amsterdam, Vol. II (1978).
  • H. P. Schwan, Determination of biological impedances. In Physical Techniques in Biological Research, Ed. Nastule, Academic Press. New York, Vol. 6 (1963).
  • M. L. Jiménez, F. J. Arroyo, J. van Turnhout, A. V. Delgado, J. Colloid Interface Sci. 249, 327 (2002).

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.