Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 13 | 4 | 372-379

Article title

Interleukin-6 As An Adipokine And Myokine: The Regulatory Role Of Cytokine In Adipose Tissue And Skeletal Muscle Metabolism

Content

Title variants

Languages of publication

EN

Abstracts

EN
Purpose. Interleukin-6 (IL-6) belongs to the IL-6-type cytokine family, which, besides IL-6, comprises of IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT) and cardiotrophin-like cytokine (CLC). The metabolic effects of IL-6 differ markedly depending on the nature of the target cell with positive action on nerve cells’ differentiation and hematopoesis, but negative in the etiology of autoimmune disease such as rheumatoid arthritis. In a target cell, IL-6 can simultaneously generate functionally distinct or sometimes contradictory signals depending on the in vivo environment, and the final physiological effect is a consequence of the orchestration of the diverse signals. Thus, its physiological effects are characterized by pleiotropy and redundancy. At present, it has been well documented that in obese individuals, IL-6, as an adipokine secreted into circulation by adipose tissue in proportion to body fat content and an elevated level of the cytokine in the plasma, adversely affects insulin signaling and glucose disposal in skeletal muscles and liver. Moreover, several lines of evidence indicated that IL-6 is a myokine synthesized in skeletal muscle and secreted into the bloodstream in response to exercise. In this way muscular work has a potential to stimulate adipose tissue lipolysis and provides an energy to working muscle. Furthermore, muscle-originated IL-6 acts locally, positively affecting intramuscular fat utilization. It has also been postulated that IL-6 is inevitable for satellite cell stimulation and muscle hypertrophy and repair.

Publisher

Journal

Year

Volume

13

Issue

4

Pages

372-379

Physical description

Dates

published
1 - 11 - 2012
online
26 - 01 - 2013

Contributors

  • Department of Biochemistry, Jozef Piłsudski University of Physical Education, 00-968 Warszawa 45, Box 55

References

  • 1. Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Muller-Newen G., Schaper F., Principles of interleukin (IL)-6-type cytokine signaling and its regulation. BiochemJ, 2003, 374, 1-20, doi: 10.1042/BJ2003.0407.[Crossref]
  • 2. Simpson R.J., Hammacher A., Smith D.K., Matthews J.M., Ward L., Interleukin-6: Structure-function relationship. Protein Sci, 1997, 6, 929-955, doi: 10.1002/pro.5560060501.[Crossref]
  • 3. Kishimoto T., Akira S., Narazaki M., Taga T., Interleukin- 6 family of cytokines and gp130. Blood, 1995, 86, 1243-1254.
  • 4. Kimamura D., Ishihara K., Hirano T., IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol, 2003, 149, 1-38, doi: 10.1007/s10254-003-0012-2.[Crossref]
  • 5. Kishimoto T., Hibi M., Murakami M., Narazaki M., Saito M., Taga T., The molecular biology of interleukin-6 and its receptor. Ciba Found Symp, 1992, 167, 5-16.
  • 6. Fonseca-Alaniz M.H., Takada J., Alonso-Vale M.I., Lima F.B., Adipose tissue as an endocrine organ: from theory to practice. J Pediatr, 2007, 83 (5 Suppl.), S192-S203, doi: 10.2223/JPED.1709.[Crossref]
  • 7. Deng Y., Scherer P., Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann NY Acad Sci, 2010,1212, E1-E19, doi: 10.1111/j.1749-6632.2010.05875.x.[Crossref]
  • 8. Mohamed-Ali V., Goodrick S., Rawesh A., Katz D.R., Miles J.M., Yudkin J.S., Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor- , in vivo. J Clin Endocrinol Metab, 1997, 82, 4196-4200, doi: 10.1210/jc.82.12.4196.[Crossref]
  • 9. Vozarova B., Weyer Ch., Hanson K., Tataranni P.A., Bogardus C., Pratley R.E., Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 2001, 9, 414-417, doi: 10.1038/oby.2001.54.[Crossref][PubMed]
  • 10. Maachi M., Pieroni L., Bruckert E., Jardel C., Fellahi S., Hainque B., Systemic low-grade inflammation is related to both circulating and adipose tissue TNF- , leptin and IL-6 levels in obese women. Int J Obes, 2004, 28, 993-997, doi: 10.1038/sj.ijo.0802718.[Crossref]
  • 11. C artier A., Lemieux I., Almeras N., Tremblay A., Bergeron J., Despres J.-P., Visceral obesity and plasma glucoseinsulin homeostasis: contribution on interleukin and tumor necrosis factor- in men. J Clin Endocrinol Metab, 2008, 93, 1931-1938, doi: 10.12/jc.2007-2191.
  • 12. B astrad J.P., Jardel C., Bruckert E., Blondy P., Capeau J., Laville M., Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab, 2000, 85, 3338- 3342, doi: 10.1210.jc.85.9.3338.
  • 13. R yan A.S., Nicklas B.J., Reduction in plasma cytokine levels with weight loss improves insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care, 2004, 27, 1699-1705, doi: 10.2337/diacare.27.7.1699.[Crossref]
  • 14. Moschen A.R., Molnar C., Geiger S., Graziadel I., Ebenbichler C.F., Weiss H., Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumor necrosis factor alpha expression. Gut, 2010, 59, 1259-1264, doi: gut.2010.214577v1.
  • 15. Oberhauser F., Schulte D.M., Faust M., Gudelhofer H., Hahn M., Muller N., Weight loss due to very low calorie diet differentially affects insulin sensitivity and interleukin- 6 serum levels in non-diabetic obese human subjects. Horm Metab Res, 2012, 44, 465-470, doi: 10.1055/s-0032. 13066341.[Crossref]
  • 16. Wallenius V., Wallenius K., Aren B., Rudling M., Carlsten H., Dickson S.L., Interleukin-6-deficient mice develop mature-onset obesity. Nat Med, 2002, 8, 75-79, doi: 10.1038/nm 0102-75.[Crossref]
  • 17. Tsigos C., Papanicolaou D.A., Kyrou I., Defensor R., Mitsiadis C.S., Chrousos G.P., Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab, 1997, 82, 4167-4170, doi: 10.1012/ jc.82.124167[Crossref]
  • 18. Fernandez-Real J.M., Vayreda M., Richart C., Gutierrez C., Broch M., Vendrell J., Rickart W., Circulating interleukin- 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin EndocrinolMetab, 2001, 86, 1154-1159, doi: 10.1012/jc.86.3.1154. [Crossref]
  • 19. Senn J.J., Klover P.J., Nowak I.A., Mooney R.A., Interleukin- 6 induces cellular insulin resistance in hepatocytes. Diabetes, 2002, 51, 3391-3399, doi: 10.2337.51.12.3391.
  • 20. Klover P.J., Zimmers T.A., Koniaris L.G., Mooney R.A., Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes, 2003, 52, 2784-2789, doi: 10.2337/diabetes.52.11.2784.[Crossref]
  • 21. Rotter V., Nagaev I., Smith U., Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 2003, 278, 45777-45784, doi: 10.1074/jbc.M301977200.[Crossref]
  • 22. Kern P.A., Ranganathan S., Li C., Wood L., Ranganathan G., Adipose tissue tumor necrosis factor and interleukin- 6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab, 2001, 280, E745-R751. Available from: URL: http://www.ajpendo.org
  • 23. Rotter Sopasakis V., Larsson B.M., Johansson A., Holmang A., Smith U., Short-term infusion of interleukin-6 does not induce insulin resistance in vivo or impair insulin signaling in rats. Diabetologia, 2004, 47, 1879-1887, doi: 10.1007/s00125-004-1554y.[Crossref]
  • 24. Franckhauser S., Elias I., Rotter Sopasakis V., Ferre T., Nagaev I., Andersson C.X., Overexpression of IL-6 leads to hyperinsulinaemia, liver inflammation and reduced body weight. Diabetologia, 2008, 51, 1306-1316, doi:10.1007/s00125-008-0998-8.[Crossref]
  • 25. Carey A.L., Syeinberg G.R., Macaulay S.L., Thomas W.G., Holmes A.G., Ramm G., Interleukin-6 increases insulinstimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes Care, 2006, 55, 2688-2697, doi: 10.2337/db05-1404.[Crossref]
  • 26. Holmes A.G., Mesa J.L., Neill B.A., Chung J., Carey A.L., Steinberg G.R., Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPAR and UCP2 expression in rats. J Endocrinol, 2008, 198, 367-374, doi: 10,1677/JOE-08-0113.
  • 27. Ruge T., Lockton J.A., Renstrom F., Lystig T., Sukonina V., Svensson M.K., Eriksson J.W., Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index. Metabolism, 2009, 58, 860-866.
  • 28. Ruotsalainen E., Stancakova A., Vauhkonen I., Salmienniemi U., Pihlajamaki J., Punnonen K., Changes in cytokine levels during acute hyperinsulinemia in offspring of type 2 diabetic subjects. Atherosclerosis, 2010, 210, 536-541.
  • 29. Lyngso D., Simonsen L., Bulow J., Metabolic effects of interleukin-6 in human splanchnic and adipose tissue. J Physiol, 2004, 543, 379-386, doi: 10.1113/lphysiol.2002.021022.[Crossref]
  • 30. van Hall G., Steensberg A., Sachcetti M., Fischer Ch., Keller Ch., Schjerling P., Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab, 2003, 88, 3005-3010, doi: 10.1012/jc.2002.-021687.[Crossref]
  • 31. Petersen W.W., Carey A.L., Sacchetti M., Steinberg G.R., Macaulay S.L., Febrraio M.A., Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture. Am J Physiol Endocrinol Metab, 2004, 288, E155-E162, doi: 10.1152/ajpendo.00257.2004.[Crossref]
  • 32. Ji Ch., Chen X., Gao Ch., Jiao L., Wang J., Xu G., IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J Bioenerg Biomembr, 2011, 43, 367-375, doi: 10.1007/s10863-011-9361-8.[Crossref]
  • 33. Hiscock N., Fischer C.P., Sacchetti M., van Hall G., Febrraio M.A., Pedersen B.K., Recombinant human interleukin- 6 infusion during low-intensity exercise does not enhance whole body lipolysis or fat oxidation in humans. Am J Physiol Endocrinol Metab, 2005, 289, E2-E7, doi: 10.1152/ajpendo.00274.2004.[Crossref]
  • 34. Rotter Sopasakis V., Sandquvist M., Gustafson B., Hammerstedt A., Schmelz M., Yang X., High local concentrations and effects on a differentiation implicate interleukin-6 as a paracrine regulator. Obes Res, 2004, 12, 454-461, doi: 10.1038/oby.2004.51.[Crossref]
  • 35. Engeli S., Feldpausch M., Gorzelniak K., Hartwig F., Heintze U., Janke J., Association between adiponectin and mediators of inflammation in obese women. Diabetes, 2003, 52, 942-947, doi: 10.2337.52.4.942.
  • 36. Sopasakis V.R., Nagaev I., Smith U., Cytokine release from adipose tissue of nonobese individuals. Int J Obes, 2005, 29, 1144-1147, doi: 10.1038.sj.ijo.0803002.
  • 37. Kralisch S., Klein J., Lossner U., Bluher M., Paschke R., Stumvoll M., Fasshauer M., Interleukin is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 2005, 289, E586-E590, doi: 10.1152/ajpendo.00090.2005.[Crossref]
  • 38. Vazquez-Vale M.E.F., Torres N., Tovar A.R., White adipose tissue as endocrine organ and its role in obesity. Arch MedRes, 2008, 39, 715-728, doi: 10.1016/j.arcmed.2008.09.005.[Crossref]
  • 39. Brandt C., Jakobsen A.H., Adser H., Olssen J., Iversen N., Kristensen J.M., IL-6 regulates exercise and training adaptation in subcutaneous adipose tissue in mice. ActaPhysiol (Oxf), 2012, 205, 224-235, doi: 10.1111/j.1748-1716.2011.02.373.x.[Crossref]
  • 40. Mohamed-Ali V., Flower L., Sethi J., Hotamisligil G., Gray R., Humpheries S.E., -adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies.J Clin Endocrinol Metab, 2001, 86, 5864-5869, doi: 10. 1210/jc.86.12.5864.[Crossref]
  • 41. Vicennati V., Vottero A., Friedman C., Papanicolaou D.A., Hormonal regulation of IL-6 production in human adipocytes. Int J Obes, 2002, 26, 905-911, doi: 10.1038/sj.ijo.0002035.[Crossref]
  • 42. Fasshauer M., Klein J., Lossner U., Pasche R., Interleukin (IL)-6 mRNA expression is simulated by insulin, isoproterenol, tumor necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes. Horm Metab Res, 2003, 35, 147-152, doi: 10.1055/S-2003-39075.[Crossref]
  • 43. Keller P., Keller Ch., Robinson L.E., Pedersen B.K., Epinephrine infusion increases interleukin-6 gene expression and systemic levels in humans. J Appl Physiol, 2004, 97, 1309-1312, doi: 10.1152/japplphysiol.00284.2004.[Crossref]
  • 44. Borcherding D.C., Hugo E.R., Idelman G., De Silva A., Richtand N.W., Loftus J., Dopamine receptors in human adipocytes: expression and functions. PloS One, 2011, 6, e25537. Available from: URL: http://www.plos.org[Crossref]
  • 45. Roth S.M., Schrager M.A., Lee M.R., Lee M.R., Metter E.J., Hurley B.F., Interleukin-6 (IL-6) genotype is associated with fat-free mass in men but not women. J Gerontol ABiol Sci Med Sci, 2003, 58, B1085-1088, doi: 10.1093/ gerona/58.12.B1085.[Crossref]
  • 46. Calder P.C., Albers R., Antoine J.M., Blum S., Bourdet-Sicard R., Ferns G.A., Inflammatory disease processes and interactions with nutrition. Br J Nutr, 2009, 101 (Suppl. 1), S1-S45.[Crossref]
  • 47. Janssen I., Ross R., Linking age-related changes in skeletal muscle mass and composition with metabolism and disease. J Nutr Health Aging, 2005, 9, 408-419.
  • 48. Pedersen B.K., Muscles and their myokines. J Exp Biol, 2011, 214, 337-346, doi: 10.1242/jeb.048074.[Crossref]
  • 49. Pedersen B.K., Steensberg A., Fischer C., Keller P., Plomgaard P., Wolsk-Petersen E., The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? ProcNutr Soc, 2004, 63, 263-267, doi: 10.1079/PNS2004338.[Crossref]
  • 50. Ostrowski K., Hermann C., Bangash A., Schjerling P., Nielsen J.N., Pedersen B.K., A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol, 1998, 513, 889-894, doi: 10.111/j.1469-7793.1998.889ba.x.
  • 51. Ostrowski K., Rohde T., Zacho M., Asp S., Pedersen B.K., Evidence that interleukin-6 is produced in human skeletal muscle during prolonged exercise. J Physiol, 1998, 508, 949-953, doi: 10.111/j.1469-7793.1998.949bp.x.
  • 52. Jonsdottir I.H., Schjerling P., Ostrowski K., Asp S., Richter E.A., Pedersen B.K., Muscle contractions induce interleukin- 6 mRNA production in skeletal muscle. J Physiol, 2000, 528, 157-163, doi: 10.1111/j.1469-7793.2000.00157.x.[Crossref]
  • 53. Starkie R.L., Rolland J., Angus D.J., Andersen M.J., Febrraio M., Circulating monocytes are not the source of elevation in plasma IL-6 and TNF- concentrations after prolonged exercise. Am J Physiol Cell Physiol, 2001, 280, C769-C774. Available from: URL: http://www.ajpcell.org.
  • 54. Hiscock N., Chan M.H., Bisucci T., Darby I.A., Febrraio M.A., Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber specificity. FASEB J, 2004, 18, 992-994, doi: 10.1096/fj.03-1259fje.[Crossref]
  • 55. Keller Ch., Steensberg A., Hansen A.K., Fischer Ch., Plomgaard P., Pedersen B.K., Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol, 2005, 90, 2075-2079, doi:10.1152/japplphysiol.00590.2005.[Crossref]
  • 56. Steensberg A., Febrraio M.A., Osada T., Schjerling P., van Hall G., Saltin B., Interleukin-6 production in contracting skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol, 2001, 537, 633-639, doi: 10.1111/j.1469-7793.2001.00633.x.[Crossref]
  • 57. Starkie R.L., Arkinstall M.J., Koukoulas I., Hawley J.A., Febrraio M.A., Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol, 2001,533,585-591, doi: 10.1111/j.1469-7793.2001.0585a.x.[Crossref]
  • 58. Nieman D.C., Davis J.M., Henson D.A., Walberg-Rankin J., Shute M., Dumke C.L. et al., Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol, 2003, 94, 1917-1925, doi: 10.1152/jaapplphysiol.01130.[Crossref]
  • 59. Nieman D.C., Davis J.M., Henson D.A., Gross S.J., Dumke C.L., Utter A.C., Muscle cytokine mRNA changes after 2.5 h cycling: influence of carbohydrate. Med Sci SportsExerc, 2005, 37, 1283-1290.
  • 60. Robson-Ansley P., Barwood M., Eglin C., Ansley L., The effect of carbohydrate ingestion on the interleukin-6 response to a 90-minute run time trial. Int J Sports PhysiolPerform, 2009, 4, 186-194.
  • 61. Langberg H., Olesen J.I., Gemmer C., Kjaer M., Substantial elevation of interleukin-6 concentration in peritendious tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol, 2002, 542, 985-990, doi: 10.1113/jphysiol.2002.019141.[Crossref]
  • 62. Fischer Ch.P., Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev, 2006, 12, 6-33.
  • 63. Febbraio M.A., Pedersen B.K., Muscle-derived interleukin- 6: mechanism for activation and possible biological roles. FASEB J, 2002, 16, 1335-1347, doi: 10.1096/fj.01- 0876rev.[Crossref]
  • 64. Holmes A.G., Watt M.J., Febbraio M.A., Suppressing lipolysis increases interleukin-6 at rest and during prolonged exercise in humans. J Appl Physiol, 2004, 97, 689-696, doi: 10.1152/japplphysiol.00195.2004.[Crossref]
  • 65. Ives S.J., Blegen M., Coughlin M.A., Redmond J., Matthews Y., Paolone V., Salivary estradiol, interleukin-6 production, and the relationship to substrate metabolism during exercise in females. Eur J Appl Physiol, 2011, 111, 1649-1658, doi: 10.1007/s00421-010-1789-8.[Crossref]
  • 66. Bruce C.R., Dyck D.J., Cytokines regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor- . Am J Physiol Endocrinol Metab, 2004, 287, E616-E621, doi: 10.1152/ajpendo.00150.2004.[Crossref]
  • 67. Chabowski A., Zmijewska M., Gorski J, Bonen A., Kaminski K., Kozuch M., IL-6 deficiency increases fatty amid transporters and intramuscular lipid content in red but not white skeletal muscle. J Physiol Pharmacol, 2008, 59 (Suppl. 7), 105-117. Available from: URL: http://www.jpp.krakow.pl
  • 68. Wolsk E., Mygind H., Grondahl T.S., Pedersen B.K., van Hall G., IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab, 2010, 299, E832-E840, doi: 10.1152/ajpendo.00328.2010.[Crossref]
  • 69. Febbraio M.A., Hiscock N., Sacchetti M., Fischer Ch.P., Pedersen B.K., Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, 2004, 53, 1643-1648, doi: 10.2337/diabetes.53.7.1643.[Crossref]
  • 70. Andreozzi F., Laratta E., Cardellini M., Marini M.A., Lauro R., Hribal M.L., Plasma interleukin-6 levels are independently associated with insulin secretion in a cohort of Italian-Caucasian nondiabetic subjects. Diabetes, 2006, 55, 2021-2024, doi: 10.2337/db06-0063.[Crossref]
  • 71. Glund S., Deshmukh A., Long Y.Ch., Moller T., Koistinen H.A., Caidahl K., Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, 2007, 56, 1630-1637, doi: 10.2337/db06-1733.[Crossref]
  • 72. Geiger P.C., Hancock Ch., Wright D.C., Han D.-H., Holloszy J.O., IL-6 increases muscle insulin sensitivity only at supraphysiological levels. Am J Physiol Endocrinol Metab, 2007, 292, E1842-E1846, doi:10.1152/ajpendo.00701.2006.[Crossref]
  • 73. Holmes A.G., Mesa J.L., Neill B.A., Chung J., Carey A.L., Steinberg G.R., Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPAR and UPC2 expression in rats. J Endocrinol, 2008, 198, 367-374, doi: 10.1677/JOE-08-0113.[Crossref]
  • 74. Kelly M., Keller Ch., Avilucea P.R., Keller P., Luo Z., Xiang X., AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem BiophysRes Commun, 2004, 320, 449-454, doi: 10.1016/j.bbrc.2004.05.188[Crossref]
  • 75. Ruderman N.B., Keller Ch., Richard A.-M., Saha A.S., Luo Z., Xiang X., Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention in the metabolic syndrome. Diabetes, 2006, 55 (Suppl. 2), S48-S54, doi: 10.2337/db06-S007.[Crossref]
  • 76. Petersen A.M.W., Pedersen B.K., The role of IL-6 in mediating the anti-inflammatory effects of exercise. J PhysiolPharmacol, 2006, 57 (Suppl. 10), 43-51. Available from: URL: http://www.jpp.krakow.pl
  • 77. Trayhurn P., Drevon C.A., Eckel J., Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Acta PhysiolBiochem, 2011, 117, 47-56, doi: 10.3109/13813455.2010.535835.[Crossref]
  • 78. Ispirlidis I., Fatouros I.G., Jamurtas A.Z., Nikolaidis M.G., Michailidis I., Douroudos I., Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med, 2008, 18, 423-431.
  • 79. Robson-Ansley P., Barwood M., Canavan J., Hack S., Eglin C., Davey S., Hewitt J., The effect of repeated endurance exercise on IL-6 and sIL-6R and their relationship with sensations of fatigue at rest. Cytokine, 2009, 45, 111-116.
  • 80. Fischer Ch., Plomgaard P., Hansen A.K., Pilegaard H., Saltin B., Pedersen B.K., Endurance training reduced the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab, 2004, 287, E1189-E1194, doi: 10.1152/ajpendo.00206.2004.[Crossref]
  • 81. Croft L., Bartlett J.D., MacLaren D.P., Reilly T., Evans L., Mattey D.L., High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 response to acute exercise. Appl Physiol Nutr Metab, 2009, 34, 1098- 1107, doi: 10.1139/H09-117.[Crossref]
  • 82. Phillips M.D., Flynn M.G., McFarlin B.K., Stewart L.K., Timmerman K.L., Resistance training at eigth-repetition maximum reduces the inflammatory milieu in elderly men. Med Sci Sports Exerc, 2010, 42, 314-325, doi: 10.1249/MSS .0b013e3181b11ab7.[Crossref]
  • 83. Thompson D., Markovitch D., Betts J.A., Mazzatti D., Turner J., Tyrrell R.M., Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged man: a randomized-controlled trial. J Appl Physiol, 2010, 108, 769-779, doi: 10.1152/ japplphysiol.00822.2009.[Crossref]
  • 84. Libardi C.A., De Souza G.V., Cavaglieri C.R., Madruga V.A., Chacon-Mikahil M.P., Effect of resistance, endurance, and concurrent training on TNF- , IL-6 and CR P. Med SciSports Exerc, 2012, 44, 50-56, doi: 10.1249/MSS .0b013e 3182399dcc.[Crossref]
  • 85. Polak J., Klimcakova E., Moro C., Viguerie N., Berlan M., Hejnova J., Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin-6 and tumor necrosis factor in obese women. Metabolism, 2006, 55, 1375- 1381, doi: 10.1016/j.metabol.2006.06.008.[Crossref]
  • 86. Oberbach A., Lehman S., Kirsch K., Kirst J., Sonnabend M., Linke A., Long-term exercise training decreases interleukin- 6 (IL-6) serum levels in subjects with impaired glucose tolerance: effect of the - 174G/C variant in IL-6 gene. Eur J Endocrinol, 2008, 159, 129-136, doi: 10.1530/ EJE-08-0220.[Crossref]
  • 87. Akerstrom T.C.A., Krogh-Madsen R., Winther Petersen A.M., Pedersen B.K., Glucose ingestion during endurance training in men attenuates expression of myokine receptor.Exp Physiol, 2009, 94, 1124-1131, doi: 10.1113/ expphysiol.2009.048983.[Crossref]
  • 88. Tsujinaka T., Fujita J., Ebisui Ch., Yano M., Kominami E., Suzuki K., Interleukin-6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest, 1996, 97, 244-249, doi: 10.1172/JCI118398.[Crossref]
  • 89. Kami K., Morikawa Y., Sekimoto M., Senba E., Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscle. J Histochem Cytochem, 2000, 48, 1203-1213, doi: 10.1177/002215540004800904.[Crossref]
  • 90. Carson J.A., Baltgalvis K.A., Interleukin-6 as a key regulator of muscle mass during cachexia. Exerc Sport SciRev, 2010, 38, 168-176, doi: 10.1097/JES.0bo13e3181f44f11.[Crossref]
  • 91. Bodell P.W., Kodesh E., Haddad F., Zaldivar F.P., Cooper D.M., Adams G.R., Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol, 2009, 106, 443-453, doi: 10.1152/japplphysiol.90831.2008.[Crossref]
  • 92. Serrano A.L., Baeza-Raja B., Perdiguero E., Jardi M., Muňoz-Canoves P., Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 2008, 7, 33-44, doi: 10.1016/j.cmet.2007.11.011.[Crossref]
  • 93. McKay B.R., De Lisio M., Johnston A.P., O’Reilly C.E., Phillips S.M., Tarnopolsky M.A., Association of interleukin- 6 signaling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoSOne, 2009, 24, e6027. Available from: URL: http://www.plosone.org
  • 94. Toth K.G., McKay B.R., De Lisio M., Little J.P., Tarnopolsky M.A., Parise G., IL-6 induced STAT3 signaling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLos One, 2011, 6, e17392. Available from: URL: http://www.plosone. org[Crossref]
  • 95. White U.A., Stephens J.M., The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des, 2011, 17, 340-346, doi: 10.2174/1381612117951642002.[Crossref]
  • 96. Broholm Ch., Mortensen O.H., Nielsen S., Akerstrom T., Zankari A., Dahl B., Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol, 2008, 586, 2195-2201, doi: 10.1113/jphysiol.2007.149781.[Crossref]
  • 97. Brandt C., Pedersen B.K., The role of exercise-induced myokines in muscle homeostasis and the defense against chronic disease. J Biomed Biotech, 2010, doi: 10.1115/2010/520258.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10038-012-0045-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.