EN
Purpose. The aim of this study was to evaluate the effects of maximal rebound jumping on sensorimotor tasks that required visual feedback control in positioning the body. Methods. A group of 14 university students (age 23.7 ± 2.6 y, height 178.6 ± 9.2 cm, and weight 70.6 ± 11.4 kg) had to hit a target that randomly appeared on one side of a screen by horizontally shifting their centre of mass (COM) in the appropriate direction prior to (as a baseline) and after six 60-second maximal jump exercises. Each response test consisted of 60 targets. The time, distance, and the velocity of the centre of pressure (COP) trajectory between the stimulus's appearance and its hit, by visually-guiding the COM movement on the screen, were registered by means of a FiTRO Sway Check system using a dynamometric platform. During the sets of jumps, the power of the concentric phase of take off was registered using a FiTRO Jumper recorder. Results. Results found that after each set of jumping (of around 110 jumps per set), mean response time significantly (p ≤ 0.05) increased from an initial value of 1616 ± 506 ms to 1825 ± 562 ms till the 4th set, with no further increase towards the 6th set. Similarly, the mean distance of COP covered during the response time increased significantly (p ≤ 0.05) from a pre-exercise value of 0.449 ± 0.298 m to 0.550 ± 0.295 m after the 4th set which then plateaued towards the 6th set. However, no significant changes in mean COP velocity were detected. Conclusion. Rebound jumping negatively affected the visual feedback control in positioning the body. However, after the proprioceptive functions deteriorated to a certain level, there was no further impairment on sensorimotor parameters.