Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 12 | 3 | 216-222

Article title

An Analysis of the Regulatory Region of the IGF1 Gene in Professional Athletes in Youth Sports Teams

Content

Title variants

Languages of publication

EN

Abstracts

EN
Purpose. The aim of this study was to search for single nucleotide changes in the P1 promoter sequence of the IGF1 gene in both high-class athletes and subjects who do not participate in professional sports. The second rationale was to compare the polymorphism frequency in the promoter region in athletes across a variety of sport disciplines. Methods. 272 athletes from the regional sports team of Wielkopolska (Poland) took part in the study. 154 athletes practiced team sports whereas 118 trained in strength sports. The control group comprised of 122 individuals who did not practice sport professionally. Genetic material came from epithelium swabs from the oral cavity, which was then subject to DNA isolation and tested with the PCR/SSCP technique. DNA samples showing different migration in electrophoresis were then sequenced. Results. The frequency of the polymorphisms was substantially higher (p < 0.05) in the athlete group (9.2%) than in the control group (2.4%). A considerably higher frequency of the sequence changes (p < 0.05%) was observed in those athletes who participated in strength sports (11.0%) than in team sports (7.8%). Among all the individuals tested, the -147bp -475bp region was the most polymorphic, yet changes within this fragment were not detected in the control group. In the control group the most often change in the nucleotide sequence was observed at position -1089 (T/C), while in the athlete group at position -383 (C/T). Change at position -1089 (T/C), found in eight individuals, is related to a potential binding site of the AP-1 transcription factor. Change at position -361 (G/A), detected in two individuals, is probably the site for the Sp1 transcription factor. Conclusion. The conducted study found that single nucleotide polymorphism of the P1 promoter region of the IGF1 gene is more frequent in athletes than in non-athletes. We believe that the variation in the P1 promoter sequence of this gene is related to an organism's adaptation to physical (especially strength) activity.

Publisher

Journal

Year

Volume

12

Issue

3

Pages

216-222

Physical description

Dates

published
1 - 9 - 2011
online
22 - 9 - 2011

Contributors

  • University School of Physical Education, Poznań, Poland
  • University School of Physical Education, Poznań, Poland
  • Adam Mickiewicz University, Poznań, Poland

References

  • Bray M., Hagberg J., Pérusse L., Rankinen T., Roth S., Wolfarth B. et al., The human gene map for performance and health-related fitness phenotype: The 2006-2007 Update. Med Sci Sports Exerc, 2009, 41 (1), 35-73, doi: 10.1249/MSS.0b013e3181844179.[WoS][Crossref]
  • Halvorsen S., Physiology of erythropoietin during mammalian development. Acta Paed, 2002, 91 (suppl. 438), 17-26, doi: 10.1111/j.1651-2227.2002.tb02901.x.[Crossref]
  • Neri Serneri G. G., Boddi M., Modesti P. A., Cecioni I., Coppo M., Padeletti L. et al., Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res, 2001, 89 (11), 977-982, doi: 10.1161/hh2301.100982.[Crossref]
  • Hameed J. M., Lange K. H. W., Andersen J. L., Schjerling P., Kjaer M, Harridge S. D. R. et al., The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol, 2003, 555 (1), 231-240, doi: 10.1113/jphysiol.2003.051722.[Crossref]
  • Frystyk J., Free insulin-like growth factors - measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res, 2004, 14 (5), 337-375, doi: 10.1016/j.ghir.2004.06.001.[Crossref][PubMed]
  • Jernström H., Deal C., Wilkin F., Chu W., Tao Y., Majeed N. et al., Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiol Biom Prev, 2001, 10 (4), 377-384.
  • Rotwein P., Bichell D. P., Kikuchi K., Multifactorial regulation of IGF-I gene expression. Mol Reprod Dev, 1993, 35 (4), 358-363, doi: 10.1002/mrd.1080350407.[PubMed][Crossref]
  • Li S., Baserga R., Epidermal growth factor and platelet-derived growth factor regulate the activity of the insulin-like growth factor I gene promoter. Exp Gerontol, 1996, 31 (1-2), 195-206, doi: 10.1016/0531-5565(95)02011-X.[PubMed][Crossref]
  • Zhu W., Chodzko-Zajko W. (eds.), Measurement issues in aging and physical activity: proceedings of the 10th Measurement and Evaluation Symposium. Human Kinetics, Champaign 2006.
  • Greig C. A., Hameed M., Young A., Goldspink G., Noble B., Skeletal muscle IGF-I isoform expression in healthy women after isometric exercise. Growth Horm IGF Res, 2006, 16 (5-6), 373-376, doi: 10.1016/j.ghir.2006.09.005.[PubMed][Crossref]
  • Obrępalska-Stęplowska A., Kędzia A., Trojan J., Goździcka-Józefiak A., Analysis of coding and promoter sequences of the IGF-I gene in children with growth disorders presenting with normal level of growth hormone. J Pediatr Endocrinol Metab, 2003, 16 (9), 1267-1275.
  • Zhai G., Rivadeneira F., Houwing-Duistermaat J., Meulenbelt I., Bijkerk C., Hofman A. et al., Insulin-like growth factor I gene promoter polymorphism, collagen type II alpha 1 (COL2A1) gene, and the prevalence of radiographic osteoarthritis: the Rotterdam Study. Ann Rheum Dis, 2004, 63 (5), 544-548, doi: 10.1136/ard.2003.010751.[Crossref]
  • Rivadeneira F., Houwing-Duistermaat J. J., Beck T. J., Janssen J. A., Hofman A., Pols H. A. P. et al., The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of non-vertebral fracture in the elderly: The Rotterdam Study. J Bone Min Res, 2004, 19 (8), 1280-1290, doi: 10.1359/jbmr.040405.[Crossref]
  • Bleumink G. S., Schut A. F. C., Sturkenboom M. C. J. M., Janssen J. A. M. J. L., Witteman J. C. M., Van Duijn C. M. et al., A promoter polymorphism of the insulin-like growth factor-I gene is associated with left ventricular hypertrophy. Heart, 2005, 91, 239-40, doi: 10.1136/hrt.2003.019778.[Crossref]
  • Vaessen N., Heutink P., Janssen J. A., Witteman J. C., Testers L., Hofman A. et al., A polymorphism in the gene for IGF-I. Functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes, 2001, 50 (3), 637-642, doi: 10.2337/diabetes.50.3.637.[PubMed]
  • Fletcher O., Gibson L., Johnson N., Altmann D. R., Holly J. M., Ashworth A. et al., Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: a systematic review. Cancer Epidemiol Biomarkers Prev, 2005, 14 (1), 2-19.[PubMed]
  • Wong H. L., Delellis K., Probst-Hensch N., Koh W. P., Van Den Berg D., Lee H. P. et al., A new single nucleotide polymorphism in the insulin-like growth factor I regulatory region associates with colorectal cancer risk in Singapore Chinese. Cancer Epidemiol Biomarkers Prev, 2005, 14 (1), 144-151.
  • Hernandez W., Grenade C., Santos E. R., Bonilla C., Ahaghotu Ch., Kittles R. A., IGF-1 and IGFBP-3 gene variants influence on serum levels and prostate cancer risk in African-Americans. Carcinogenesis, 2007, 28 (10), 2154-2159, doi:10.1093/carcin/bgm190.[WoS][PubMed][Crossref]
  • Bamman M. M., Ship J. R., Jiang J., Gower B. A., Hunter G. R., Goodman A. et al., Mechanical load increase muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab, 2001, 280 (3), E383-E390.
  • Singh M. A., Ding W., Manfredi T. J., Solares G. S., O'Neill E. F., Clements K. M. et al., Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. Am J Physiol, 1999, 277 (1), E135-E143.
  • Adams G. R., Haddad F., The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol, 1996, 81 (6), 2509-2516.
  • El Elj N., Elloumi M., Zaourali M., Latiri I., Lac G., Tabka Z. et al., Discrepancy in IGF-1 and GH response to submaximal exercise in young male subjects. Sci Sports, 2007, 22, 155-59, doi: 10.1016/j.scispo.2007.06.002.[Crossref]
  • Rankinen T., Bray M. S., Hagberg J. M., Pérusse L., Roth S. M., Wolfarth B. et al., The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc, 2006, 38 (11), 1863-1888, doi: 10.1249/01.mss.0000233789.01164.4f.[Crossref]
  • Hall L. J., Kajimoto Y., Bichell D., Kim S. W., James P. L., Counts D. et al., Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol, 1992, 11 (4), 301-313, doi: 10.1089/dna.1992.11.301.[PubMed][Crossref]
  • Kim S. W., Lajara R., Rotwein P., Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol, 1991, 5 (12), 1964-1972, doi: 10.1210/mend-5-12-1964.[PubMed][Crossref]
  • Kajimoto Y., Rotwein P., Structure of the chicken insulin-like growth factor I gene. J Biol Chem, 1991, 266, 9724-9731.
  • McLellan A. S., Kealey T., Landglands K., An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating. Am J Physiol Cell Physiol, 2006, 291 (2), C300-C307, doi:10.1152/ajpcell.00345.2005.[Crossref]
  • Berry M., Unterman T., The IGF-I system: molecular biology, physiology and clinical applications (book review). Med Sci Sports Exerc, 2000, 32 (2), 547.[Crossref]
  • Umayahara Y., Kawamori R., Watada H., Imano E., Iwama N., Morishima T. et al., Estrogen regulation of the insulin-like growth factor-I gene transcription involves an AP-1 enhancer. J Biol Chem, 1994, 269 (23), 16433-16442.
  • Philips L. S., Kaytor E. N., Metabolic regulation of IGF-I gene expression. J Anim Sci, 1999, 77 (suppl. 3), 43-54.
  • Nolten L. A., Steenbergh P. H., Sussenbach J. S., The hepatocyte nuclear factor 3b stimulates the transcription of the human insulin-like growth factor I gene in a direct and indirect manner. J Biol Chem, 1996, 271 (50), 31846-31854, doi: 10.1074/jbc.271.50.31846.[Crossref]
  • Telgmann R., Dördelmann C., Brand E., Nicaud V., Hagedorn C., Pavenstädt H. et al., Molecular genetic analysis of a human insulin-like growth factor 1 promoter P1 variation. FASEB J, 2009, 23 (5), 1303-1313, doi: 10.1096/fj.08-116863.[PubMed][WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10038-011-0021-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.