Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2011 | 12 | 1 | 88-94

Article title

Circulatory and Respiratory Response to Exercise With Added Respiratory Dead Space


Title variants

Languages of publication



Purpose. Assessment of circulatory and respiratory response to separate exercise tests under the condition of increasing the volume of added respiratory dead space by 200 cm3 at a time. Basic procedures. Human volunteers performed 10 minutes of cycle ergometer exercise on nine occasions, with the increasing volume of added dead space at the intensity of 100 Watt. Main findings. The ventilatory parameters tended to increase proportionally to the volume of added dead space. VE, VT, RF increased from 29.35 ± 4.01; 1.62 ± 0.29; 18.52 ± 4.76 (at 0 cm3) to 62.42 ± 8.33; 2.43 ± 0.24; 26.00 ± 5.51 (at 1600 cm3), respectively. There were not any significant differences among the post-exercise values of LA, pO2, HCO-3act, BE(B) and HR. All the values of O2 SAT ranged between 94.87 ± 1.19 and 95.72 ± 0.76, and the values of HCO-3std between 25.23 ± 1.36 and 24.00 ± 0.78. The post-exercise values of pH decreased, and pCO2 increased proportionally to the volume of added dead space, from 7.41 ± 0.01 (at 0 cm3) to 7.33 ± 0.03 (at 1600 cm3) and from 40.89 ± 2.27 (at 0 cm3) to 51.13 ± 3.39 (at 1600 cm3), respectively. Conclusions. Added respiratory dead space evokes: increase in pulmonary ventilation, mainly in tidal volume; increase in arterial carbon dioxide pressure and decrease in pH, proportionally to the increase in dead space volume. Added dead space neither evokes hypoxemia nor intensifies anaerobic reproduction of ATP.










Physical description


1 - 3 - 2011
14 - 3 - 2011


  • Department of Physiology and Biochemistry, University School of Physical Education, Wrocław, Poland
  • Department of Physiology and Biochemistry, University School of Physical Education, Wrocław, Poland


  • O'Donnell D. E., Hong H. H., Webb K. A., Respiratory sensation during chest wall restriction and dead space loading in exercising men. J Appl Physiol, 2000, 88 (5), 1859-1869.
  • Takahashi T., Osanai S., Nakao S., Takahashi M., Nakano H., Ohsaki Y., Kikuchi K., Stimulus Interaction between Hypoxia and Hypercapnia in the Human Peripheral Chemoreceptors. Adv Exp Med Biol, 2006, 580 (24), 263-266. DOI: 10.1007/0-387-31311-7_41.[Crossref]
  • Maruyama R., Masuyama H., Tanaka Y., Nishibayashi Y., Honda Y., Comparison of ventilatory response between dead space and CO2 breathing in humans. Jpn J Physiol, 1988, 38 (3), 321-328.[Crossref]
  • Poon C. S., Effects of inspiratory resistive load on respiratory control in hypercapnia and exercise. J Appl Physiol, 1989, 66 (5), 2391-2399.
  • Poon C. S., Potentiation of exercise ventilatory response by airway CO2 and dead space loading. J Appl Physiol, 1992, 73 (2), 591-595.
  • Koppers R. J., Vos P. J., Folgering H. T., Tube breathing as a new potential method to perform respiratory muscle training: safety in healthy volunteers. Respiratory Med, 2006, 100 (4), 714-720. DOI: 10.1016/j.rmed.2005.07.013.[Crossref]
  • Toklu A. S., Kayserilioğlu A., Unal M., Ozer S., Aktaş S., Ventilatory and metabolic response to rebreathing the expired air in the snorkel. Int J Sports Med, 2003, 24 (3), 162-165. DOI: 10.1055/s-2003-39084.[PubMed][Crossref]
  • Moosavi S. H., Guz A., Adams L., Repeated exercise paired with "imperceptible" dead space loading does not alter VE of subsequent exercise in humans. Jpn Appl Physiol, 2002, 92 (3), 1159-1168. DOI: 10.1152/japplphysiol.00358.2001.[Crossref]
  • Khayat R. N., Xie A., Patel A. K., Kaminski A., Skatrud J. B., Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest, 2003, 123 (5), 1551-1560. DOI: 10.1378/chest.123.5.1551.[Crossref]
  • Syabbalo N. C., Zintel T., Watts R., Gallagher C. G., Carotid chemoreceptors and respiratory adaptations to dead space loading during incremental exercise. J Appl Physiol, 1993, 75 (3), 1378-1384.
  • Krishnan B. S., Stockwell M. J., Clemens R. E., Gallagher C. G., Airway anesthesia and respiratory adaptations to dead space loading and exercise. Am J Respir Crit Care Med, 1997, 155 (2), 459-465.
  • Kelman G. R., Watson A. W. S., Effect of added dead-space on pulmonary ventilation during sub-maximal, steady-state exercise. Quarterly Journal of Experimental Physiology, 1973, 58, 305-313.
  • Smejkal V., Vavra J., Bartakova L., Kryl L., Palecek F., The pattern of breathing and the ventilatory response to breathing through a tube and to physical exercise in sport divers. Eur J Appl Physiol Occup Physiol, 1989, 59 (1-2), 55-58.[PubMed][Crossref]
  • Kurotobi T., Sato H., Yokoyama H., Li D., Koretsune Y., Ohnishi Y. et al., Respiratory oxygen cost for dead space challenge is characteristically increased during exercise in patients with chronic heart failure: does it further decrease exercise capacity? J Card Fail, 1997, 3 (3), 181-188.[PubMed][Crossref]
  • Lawler J., Powers S. K., Thompson D., Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol, 1988, 64 (4), 1486-1492.
  • Martin D., O'Kroy J., Effects of acute hypoxia on the VO2max of trained and untrained subjects. J Sports Sci, 1993, 11 (1), 37-42.[Crossref]
  • Woorons X., Mollard P., Pichon A., Lamberto C., Duvallet A., Richalet J. P., Moderate exercise in hypoxia induces a greater arterial desaturation in trained than untrained men. Scand J MedSciSports, 2007, 17 (4), 431-436. DOI: 10.1111/j.1600-0838.2006.00577.x.[Crossref]
  • Ogawa T., Hayashi K., Ichinose M., Nishiyasu T., Relationship between resting ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. J Appl Physiol, 2007, 103 (4), 1221-1226. DOI: 10.1152/japplphysiol. 00153.2007.[WoS][Crossref]
  • Kato T., Tsukanaka A., Harada T., Kosaka M., Matusi N., Effect of hypercapnia on changes in blood pH, plasma lactate and ammonia due to exercise. Eur J Appl Physiol, 2005, 95 (5-6), 400-408. DOI: 10.1007/s00421-005-0046-z.[Crossref]
  • Hollidge-Horvat M. G., Parolin M. L., Wong D., Jones N. L., Heigenhauser G. J. F., Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab, 1999, 277 (4), 647-658.
  • Graham T. E., Wilson B. A., Sample M., Van Dijk J., Bonen A., The effects of hypercapnia on metabolic responses to progressive exhaustive work. Med Sci Sports Exerc, 1980, 12 (4), 278-284.[PubMed]
  • Graham T. E., Wilson B. A., Sample M., Van Dijk J., Goslin B., The effects of hypercapnia on the metabolic response to steadystate exercise. Med Sci Sports Exerc, 1982, 14 (4), 286-291.[Crossref]
  • Vianna L. G., Koulouris N., Lanigan C., Moxham J., Effect of acute hypercapnia on limb muscle contractility in humans. J Appl Physiol, 1990, 69, 1486-1493.
  • Mador M. J., Wendel T., Kufel T. J., Effect of acute hypercapnia on diaphragmatic and limb muscle contractility. Am J Respir Crit Care Med, 1997, 155 (5), 1590-1595.
  • Zhao L., Lu J. B., Yang S. Q., Zhu L. H., Effect of dead space loading on ventilation, respiratory muscle and exercise performance in chronic obstructive pulmonary disease [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi [Chinese Journal of Tuberculosis And Respiratory Diseases], 2004, 27 (11), 748-751.
  • McParland C., Mink J., Gallagher C. G., Respiratory adaptations to dead space loading during maximal incremental exercise. J Appl Physiol, 1991, 70 (1), 55-62.[PubMed]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.