Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2011 | 12 | 1 | 75-80

Article title

Do Men and Women Use Similar Adaptive Locomotion to Clear Static and Dynamic Obstacles?


Title variants

Languages of publication



Purpose. The purpose of this study was to analyze the influence of gender on the adaptive locomotion in the clearance of obstacles. Specifically, it was evaluated if there are differences in the space-temporal parameters between male and female in the clearance of and dynamic obstacles moving at both slow and fast speeds. Basic procedures. Five young male adults and five young female adults took part in this study. The task was performed in three conditions: static obstacle and dynamic obstacle - clearance perpendicular to the participant's trajectory at slow speed (1.07 m/s) and at fast speed (1.71 m/s). The trials were recorded by two digital cameras and spatial-temporal information was obtained. Main findings. The dynamic obstacle conditions required more visual inspection. The results showed different adaptive locomotion between the sexes. The distinct gait patterns were evidenced for the spatial and temporal variables and cadence in the three conditions. Conclusions. The women presented a more conservative behavior, which was evidenced by the increase of the length in the penultimate step and in the toe clearance.










Physical description


1 - 3 - 2011
14 - 3 - 2011


  • Posture and Gait Studies Lab, UNESP - São Paulo State University at Rio Claro SP, Brazil
  • Posture and Gait Studies Lab, UNESP - São Paulo State University at Rio Claro SP, Brazil
  • Posture and Gait Studies Lab, UNESP - São Paulo State University at Rio Claro SP, Brazil


  • Hurd W. J., Chmielewski T. L., Axe M. J., Davis I., Snyder-Mackler L., Differences in normal and perturbed walking kinematics between male and female athletes. Clin Biomech, 2004, 19, 465-472. DOI: 10.1016/j.clinbiomech.2004.01.013.[Crossref]
  • Granata K. P., Padua D. A., Wilson S. E., Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol, 2002, 12, 127-135. DOI: 10.1016/S1050-6411(02)00003-2.[Crossref][PubMed]
  • Kerrigan D., Casey M. D., Todd M. S., Mary K., Croce U. D., Gender differences in joint biomechanics during walking: Normative Study in Young Adults. Am J Phys Med Rehabil, 1998, 77, 2-7.
  • Besier T. F., Lloyd D. G., Ackland T. R., Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc, 2003, 35, 119-127. DOI: 10.1249/01.MSS.0000043608.79537.AB.[Crossref]
  • Lephart S. M., Ferris C. M., Riemann B. L., Myers J. B., Fu F. H., Gender differences in strength and lower extremity kinematics during landing. CORR, 2002, 401, 162-169.
  • Malinzak R. A., Colby S. M., Kirkendall D. T., Yu B., Garrett W. E., A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech, 2001, 16, 438-445. DOI: 10.1016/S0268-0033(01)00019-5.[Crossref]
  • Hardy S. E., Allore H. G., Guo Z., Gill T. M., Explaining the effect of gender on functional transitions in older persons. J Gerontol A Biol Sci Med Sci, 2008, 54, 79-86. DOI: 10.1159/000115004.[Crossref]
  • Kwon I. S., Oldaker S., Schrager M., Talbot L. A., Fozard J. L., Metter E. J., Relationship between muscle strength and the time taken to complete a standardized walk-turn-walk test. J Gerontol A Biol Sci Med Sci, 2001, 56, 398-404.
  • Callisaya M. L., Blizzard L., Schmidt M. D., McGinley J. L., Srikanth V. K., Sex modifies the relationship between age and gait: A population-based study of older adults. J Gerontol A Biol Sci Med Sci, 2008, 63, 165-170.[WoS]
  • Nagasaki H., Itoh H., Hashizume K., Furuna T., Maruyama H., Kinugasa T., Walking patterns and finger rhythm of older adults. Percept Mot Skills, 1996, 82, 435-447.
  • Patla A. E., Strategies for dynamic stability during adaptive human locomotion: Contribution of visual, vestibular and kinesthetic inputs to maintaining balance in complex environments. IEEE Eng Med Biol Mag, 2003, March/April vol. 22, 48-52. DOI: 10.1109/MEMB.2003.1195695.[Crossref]
  • Patla A. E., Prentice S. D., Gobbi L. T. B., Visual control of obstacle avoidance during locomotion: strategies in young children, young and older adults. In: Ferrandez A. M., Teasdale N. (eds.), Changes in sensory motor behavior in aging. Elsevier, Amsterdam 1996, 257-275.
  • Krell J., Patla A. E., The influence of multiples obstacles in the travel path on avoidance strategy. Gait Post, 2002, 16, 15-19.
  • Mohagheghi A. A., Moraes R., Patla A. E., The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Exp Brain Res, 2004, 155, 459-468. DOI: 10.1007/s00221-003-1751-7.[Crossref]
  • Lowrey C. R., Watson A., Vallis L. A., Age-related changes in avoidance strategies when negotiating single and multiple obstacles. Exp Brain Res, 2007, 182, 289-299. DOI: 10.1007/s00221-007-0986-0.[Crossref][WoS]
  • Silva J. J., Barbieri F. A., Gobbi L. T. B., Adaptive locomotion for crossing a moving obstacle. Motor Control [in press].
  • Winter D. A., The biomechanics and motor control of human gait. 2nd ed., University of Waterloo, Waterloo 1991.
  • Figueroa P. J., Leite N. J., Barros R. M. L., A flexible software for tracking of markers used in Human Motion Analysis. Computer Methods Programs Biomed, 2003, 72, 155-165.
  • Abdel-Aziz Y. I., Karara H. M., Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the ASP/UI Symposium on Close-Range Photogrammetry, American Society of Photogrammetry, Falls Church 1971, 1-18.
  • Barbieri F. A., Santiago P. R. P., Gobbi L. T. B., Cunha S. A., Dominant and non-dominant support limb kinematics variability during futsal kick. Port J Sport Sci, 2003, 8, 68-76.
  • Crosbie J., Vachalathiti R., Smith R., Age, gender and speed effects on spinal kinematics during walking. Gait Post, 1997, 5, 13-20. DOI: 10.1016/S0966-6362(96)01068-5.[Crossref]
  • Zar J., Bioestatiscal Analysis. 4th ed., Prentice-Hall, Upper Saddle River 1999.
  • Chen H. C., Ashton-Miller J. A., Alexander N. B., Schultz A. B., Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol A Biol Sci Med Sci, 1991, 46, 196-203. DOI: 10.1093/geronj/46.6.M196.[Crossref]
  • Gérin-Lajoie M., Richards C. L., McFadyen B. J., The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control, 2005, 9, 242-269. DOI: 10.1016/j.gaitpost.2005.11.001.[Crossref]
  • Patla A. E., Rietdyk S., Visual control of limb trajectory over obstacles during locomotion: effect of obstacle height and width. Gait Post, 1993, 1, 45-60. DOI: 10.1016/0966-6362(93)90042-Y.[Crossref]
  • Patla A. E., Understanding the control of human locomotion: a prologue. In: Patla A. E. (ed.), Adaptability of human gait. Elsevier, Amsterdam 1991, 13-17.
  • Owolabi E. O., Alawale O. A., Lower limb flexibility norms: some racial, gender and limb symmetrical considerations. Afr J Health Sci, 1996, 3, 56-59.[PubMed]
  • Tresilian J. R., The accuracy of interceptive action in time and space. Exerc Sport Sci Rev, 2004, 32, 167-173.
  • Bradshaw E. J., Sparrow W. A., Effects of approach velocity and foot-target characteristics on the visual regulation of step length. Hum Mov Sci, 2001, 20, 401-426. DOI: 10.1016/S0167-9457(01)00060-4.[PubMed][Crossref]
  • Weineck J., Optimales training. Perimed Fachbuch, Erlange 1990.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.