Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 4 | 35-41

Article title

Meso-tetraphenylporphyriniron(iii) chloride catalyzed oxidation of aniline and its substituents by magnesium monoperoxyphthalate in aqueous acetic acid medium


Title variants

Languages of publication



The catalytic properties of the first generation catalyst meso-tetraphenylporphyriniron(III) chloride and magnesium monoperoxyphthalate (MMPP) as oxidant have been studied in the oxidation of aniline and its substituents in acetic acid medium. The thermodynamic parameters for the oxidation have been determined and discussed. It confirms the Exner relationship (only at the low range of temperatures) and also some of the activation parameters to the isokinetic relationships. The magnesium monoperoxyphthalate oxidation with 18 ortho- meta- and para-substituted anilines fulfills with isokinetic relationship but not to any of the linear free energy relationships. The reaction mechanism and the rate law were proposed.









Physical description


1 - 12 - 2012
12 - 01 - 2013


  • Sona College of Technology, Department of Chemistry, Salem – 636005, Tamilnadu, India
  • Sona College of Technology, Department of Chemistry, Salem – 636005, Tamilnadu, India


  • 1. Xian-Tai Zhou, Hong-Bing Ji & Qiu-Lan Yuan. (2008). Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso- tetraphenylporphyrin chloride in the presence of molecular oxygen J. Porphyr. Phthalocya., 12, 94-100. DOI: 10.1142/ S1088424608000121.[WoS][Crossref]
  • 2. Amit Singh, Arunava Agarwala, Kaliappan Kamaraj & Debkumar Bandyopadhyay. (2011). The mechanistic aspects of iron(III) porphyrin catalyzed oxidation reactions in mixed solvents Inorganica Chimica Acta 372, 295-303. DOI:10.1016/j. ica.2011.02.054.[Crossref][WoS]
  • 3. Ned A. Stephenson & Alexis, T. Bell. (2007), Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity J. Mol. Catal. A-Chem., 275, 54-62. DOI:10.1016/j.molcata. 2007.05.005[WoS][Crossref]
  • 4. Masami Fukushima & Kenji Tatsumi (2006), Complex formation of water-soluble iron(III)-porphyrin with humic acids and their effects on the catalytic oxidation of pentachlorophenol J. Mol. Catal. A-Chem., 245, 178-184. DOI:10.1016/j. molcata.2005.09.051[Crossref]
  • 5. Masami Fukushima (2008), Oxidative degradation of pentachlorophenol by an iron(III)-porphyrin catalyst bound to humic acid via formaldehyde polycondensation J. Mol. Catal. A-Chem., 286, 47-54. DOI:10.1016/j.molcata.2008.01.041[Crossref][WoS]
  • 6. Genebaldo, S. Nunes, Ildemar Mayer, Henrique, E. Toma & Koiti Araki. (2005) J. of catalysis, 236, 55-61. Kinetics and mechanism of cyclohexane oxidation catalyzed by supramolecular manganese(III) porphyrins. DOI: 10.1016/j.jcat.2005.09.003.[Crossref]
  • 7. Ned A. Stephenson & Alexis, T. Bell. (2006), The influence of substrate composition on the kinetics of olefin epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin. J. Mol. Catal. A-Chem., 258, 231-235. DOI: 10.1016/j.molcata.2006.05.034.[Crossref]
  • 8. Amit Singh, Arunava Agarwala, Kaliappan Kamaraj & Debkumar Bandyopadhyay. (2011). The mechanistic aspects of iron(III) porphyrin catalyzed oxidation reactions in mixed solvents. Inorganica Chimica Acta., 372, 295-303. DOI: 10.1016/j. ica.2011.02.054.[Crossref][WoS]
  • 9. Tollari, S., Fumagalli, A. & Porta, F. (1996). Catalytic Oxidation of Benzylic Amines to Imines by M (TPP)CL(M = Fe, Mn) followed by Reduction to Secondary Amines. Inorg. Chim. Acta., 247, 71-80. DOI : 10.1016/0020-1693(95)04836-7.[Crossref]
  • 10. Qingzhang Lu, Ruqin Yu & Guoli Shen. (2003). The Structure, Catalytic Activity and Reaction Mechanism Modeling for Halogenated Iron-Tetraphenylporphyrin complexes. J. Mol. Catal. A-Chem., 198, 9-19 DOI: 10.1016/S 1381- 1169(02)00726-4.[Crossref]
  • 11. Fabiana C Skrobot, Ieda Rosa LV, Ana Paula A. Marques, Patricia, R. Martins, Rocha, J., Anabela A. Valente & Yassuko Iamamoto. (2005). Asymmetric cationic methyl pyridyl and pentafluorophenyl porphyrin encapsulated in zeolites: A cytochrome P-450 model. J. Mol. Catal. A-Chem., 237, 86-92. DOI: 10.1016/j.molcata.2005.05.001.[Crossref]
  • 12. Enrico Baciocchi, Osvaldo Lanzalunga & Andrea Lapi. (1995). Formation of quinones in the iron porphyrin catalyzed oxidation of benzene and alkylbenzenes by magnesium monoperoxyphthalate. Tetrahedron lett., 36, 3547-3548. DOI: 10.1016/0040-4039(95)00554-P.[Crossref]
  • 13. Simon J. Hayes, David W. Knight, Andrew W.T. Smith, & Mark J. O’Halloran (2010). On the curious oxidations of 2-furylethanols. Tetrahedron lett., 51, 720-723. DOI:10.1016/j. tetlet.2009.11.119.[Crossref][WoS]
  • 14. Lisa, Y. Wu, Joseph, K. Choi, Krit, Y. Hatton, Clifford E. Berkman (2010). A simple method for the oxidation of a-amino acid esters to a-oximino esters. Tetrahedron lett., 51, 402-403. DOI:10.1016/j.tetlet.2009.11.045.[Crossref]
  • 15. Bhuvaneshwari, D.S. (2008). Solvent Hydrogen Bonding and Structural Influences on the reactivity of Anilines. Ph.D thesis, Gandhigram Rural University Gandhigram, India.
  • 16. Bhuvaneshwari, D.S. & Elango, K.P. (2006). Correlation analysis of reactivity in the oxidation of anilines by nicotinium dichromate in nonaqueous media. Int. J. Chem. Kinet., 38, 657-665. DOI 10.1002/kin.20199.[Crossref]
  • 17. Karunakaran, C. & Palanysamy, P.N. (1999). Lack of linear free energy relationship: tungsten(VI) catalyzed of anilines. Int. J. Chem. Kinet., 31, 571-575. DOI: 10.1002/(SICI)1097-4601.[Crossref]
  • 18. Bhuvaneshwari, D.S. & Elango, K.P. (2006). Preferential solvation effects on the kinetics and thermodynamics of oxidation by chromium (IV). Z. Phys. Chem., 220, 697-721. DOI 10.1524/zpch.2006.220.6.697.[Crossref]
  • 19. Karunakaran, C. & Palanysamy, P.N. (2001). Autocatalysis in the sodium perborate oxidation of aniline in acetic acid-ethylene glycol. J. Mol. Catal. A-Chem., 172, 9-17. DOI. org/10.1016/S1381-1169(01)00113-3.[Crossref]
  • 20. Bhuvaneshwari, D.S. & Elango, K.P. (2006). Studies on the kinetics of imidazolium fluorochromate oxidation of some meta- and para-substituted anilines in nonaqueous media. Int. J. Chem. Kinet., 38, 166-175. DOI: 10.1002/ kin.20150.[Crossref]
  • 21. Chockalingam Karunakaran & Ramasamy Kamalam. (2002).Mechanism and reactivity in perborate oxidation of anilines in acetic acid. J. Chem. Soc., Perkin Trans., 2, 2011-2018.DOI:10.1039/b208199g.[Crossref]
  • 22. Durvas Bhuvaneswari, S. & Kuppanagounder Elango, P. (2005). Effect of Preferential Solvation on the Kinetics and Thermodynamics of Oxidation of Anilines by Nicotinum dichromate. Z.Naturforsch. 60b, 1105-1111.
  • 23. Corwin Hansch, Leo, A. & Taft, R.W. (1991). A Survey of Hammett Substituent Constants and Resonance and Field Parameters Chem. Rev., 91, 165-195.DOI: 10.1021/cr00002a004.[Crossref]
  • 24. Subbiah Meenakashisundaram, Selvaraju, M. Made Gowda, N.M., Kanchugarakoppal, Rangappa, S. (2005). Effect of substituents on the rate of oxidation of anilines with peroxomonosulfate monoanion (HOOSO-3) in aqueous acetonitrile: a mechanic study. Int. J. chem. kinet.37, 649-657. DOI:10.1002/kin.20119.[Crossref]
  • 25. Chandramohan, G., Kalyansundharam, S. & Renganathan, R. (2002). Oxidation of indole -3-acetic acid by peroxomonosulphate: A kinetic and mechanic study. Int. J. Chem. Kinet., 34, 569. DOI:10.1002/kin.10060.[Crossref]
  • 26. Kutti Rani, S., Nirmal Kumar, S., Crystal Y Wilson, Gopi, A. & Eswaramoorthy, D. (2009). Oxidation of Vallillin by Peroxomonosulphate-Thermodynamic and kinetics Investigation. J. Ind. Eng. Chem., 15, 898-901. DOI: 10.1016/j. jiec.2009.09.020.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.