Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 4 | 30-34

Article title

Surface active agent production from olive oil in high salt conditions and its process optimization


Title variants

Languages of publication



Microbial surfactants or biosurfactants are surface active amphiphilic macromolecules that are produced by a number of microorganisms (bacteria, yeast and fungi). These compounds have extensive application in various industries especially in food, pharmaceutical and oil industry. The aim of this paper is to optimize the culture conditions for the biosurfactant production from olive oil by a novel halophilic isolate microorganism. The Taguchi experimental design methodology based analysis of olive oil as carbon source, yeast extract as nitrogen source and KH2PO4 as phosphorus source revealed that the olive oil and yeast extract significantly affect biosurfactant production in high salt conditions. Maximum biosurfactant (E24= 40%) produced in the presence of 4% (v/v) olive oil, 0.2% (w/v) yeast extract, and 0.002% (w/v) KH2PO4 . In conclusion, halophilic archaeon Haloarcula sp. IRU1 could be a potential microorganism for the production of biosurfactant from olive oil as carbon source in high salt conditions. The optimal parameters obtained during the optimization process were: olive oil 4%, yeast extract 0.4% and KH2PO4 0.004%.









Physical description


1 - 12 - 2012
12 - 01 - 2013


  • Razi University, Department of Biology, Faculty of Science, Kermanshah, Iran
  • Islamic Azad University, Young Researchers Club, Kermanshah Branch, Kermanshah, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Paramedicine, Ilam, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Paramedicine, Ilam, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Medicine, Ilam, Iran


  • 1. Onbasli, D. & Aslim, B. (2009). Biosurfactant production in sugar beet molasses by some Pseudomonas spp, J. Environ. Biol., 30, 161-163.
  • 2. Pacheco, G.J., Ciapina, E.M.P., Gomes, E.B. and Junior, N.P. (2010). Biosurfactant production by Rhodococcuserthropolis and its application to oil removal, Brazilian J. Microbiol., 41, 685-693.
  • 3. Kumar, C.G., Joo, S.H., Choi, J.W., Koo, Y.M. & Chang, C.S., (2004). Purification and characterization of an extracellular polysaccharide from haloakalophilic Bacillus sp. I-450. Enz. Microbial. Technol., 34, 673-681. doi:10.1016/j.enzmictec.2004.03.001.[Crossref]
  • 4. Van Dyke, M.I., Lee, H. & Trevors, J.T., (1991). Applications of Microbial Surfactants. Biotech. Adv., 9, 241&252.
  • 5. Parthasarathi, R. & Sivakumaar, P.K. (2009). Effect of Different Carbon Sources on the Production of Biosurfactant by Pseudomonas fluorescens Isolated from Mangrove Forests (Pichavaram), Tamil Nadu, India. Glob. J. Env. Res. 3, 99-101.
  • 6. Pruthi, V. & Cameotra, S.S., (2003). Effect of Nutrients on Optimal Production of Biosurfactants by Pseudomonas putida-A Gujarat Oil Field Isolate. J. Surfact. Deterg., 6, 65-68.
  • 7. Zajic, J.E., Gignard, H. & Gerson, D.F. (1997). Properties and Biodegradation of a Bioemulsifier from Corynebacterium hydrocarboclatus. Biotechnol. Bioeng., 19, 1303-1312.
  • 8. Kretschmer, A., Bock, H. & Wagner, F. (1982). Chemical and Physical Characterization of Interfacial- -Active Lipids from Rhodococcus erythropolis Grown on n-Alkane. Appl. Environ. Microbiol. 44, 864-870.
  • 9. Georgiou, G., Lin, S.C. & Sharma, M.M. (1990). Surface Active Compounds from Microorganisms. Bio- Technol., 10, 60-65.
  • 10. Desai, J.D. & Banat, I.M., (1997). Microbial Production of Biosurfactants and Their Commercial Potential, Microbiol. Mol. Biol. Rev. 61, 47-64.[PubMed]
  • 11. Kebbouche-Gana, S., Gana, ML, Khemili, S., Fazouane-Naimi, F., Bouanane, N.A., Penninckx, M. & Hacene, H., (2009). Isolation and characterization of halophilic Archaea able to produce biosurfactants, J. Ind. Microbiol. Biotechnol., 36, 727-738. DOI: 10.1007/ s10295-009-0545-8.[Crossref][WoS]
  • 12. Post, F.J. & Collins, N.F. (1982). A preliminary investigation of the membrane lipid of Halobacteriumhalobium as a food additive, J. Food. Biochem., 6, 25-38. DOI: 10.1111/j.1745-4514.1982.tb00294.x.[Crossref]
  • 13. Yakimov, M.M., Timmis, K.N., Wray, V., & Fredrickson, H.L., (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50, Appl. Environ. Microbiol., 61,1706-1713.
  • 14. Kiran, G.S., Hema, T.A., Gandhimathi, R., Selvin, J., Thomas, T.A., Ravji, T.R. & Natarajaseenivasan, K. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillusustus MSF3, Col. Surf. B Biointer., 73, 250-256. doi:10.1016/j.colsurfb.2009.05.025.[WoS][Crossref]
  • 15. Shyu, H.L. & Hsieh, L.L. (2007). Application of the Taguchi experimental design to the optimization of UV/TiO2 and UV/H2O2 process for copper complexes treatment, Environ. Inform. Arch., 5, 674-683.
  • 16. Taguchi, G. (1991). System of experimental design. Quality Resources, Kraus and Americans Supplier Institute (eds), USA.
  • 17. Venil, C.K. & Lakshmanaperumalsamy, P, (2008) Response Surface Methodology for the Optimization of Alpha Amylase Production by Serratia marcescens SB08, P. J. Sci. Technol. 51, 333-339.
  • 18. Abouseoud, M., Maachi, R. & Amrane, A. (2007). Biosurfactant Production from olive oil by Pseudomonas fluorescens. Comm. Cur. Res. Edu. Top. Trends Appl. Microbiol. 340-347.
  • 19. Franzetti, A., Caredda, P., Colla, P.L., Pintus, M., Tamburini, E., Papacchini, M. & Bestetti, G. (2009). Cultural factors affecting biosurfactant production by Gordonia sp. BS29, Int. Biodeter. Biodeg., 63, 943-947.
  • 20. Van Hamme, J.D., Singh, A. & Ward, O.P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology, Biotechnol., Adv., 24, 604-620. doi:10.1016/j. biotechadv.2006.08.001.[Crossref]
  • 21. Haba, E., Espuny, M.J., Busqueis, M., & Manresa, A. (2000). Isolation of lipasescreening bacteria by developing used frying oil as selective substrate, J. Appl. Microbiol., 88, 379-387.[Crossref]
  • 22. Moussa, TAA, Ahmed, G.M. & Abdel-hamid, S.M.S., (2006) Optimization of Cultural Conditions for Biosurfactant Production from Nocardia amarae, J. Appl. Sci. Res., 2, 844-850.
  • 23. Zhu, Y., Ni, J. & Huang, W., (2010), Process optimization for the production of diosgenin with Trichodermareesei, Bioproc. Biosyst. Eng., 33, 647-655.DOI: 10.1007/ s00449-009-0390-1.[Crossref][WoS]
  • 24. Wang, Y.X., Liu, H., Bao, J.G., Hong, Y., Yang, Z.H. & Zhang, C.X. (2008). The saccharification-membrane retrieval-hydrolysis (SMRH) process: a novel approach for cleaner production of diosgenin derived from Dioscorea zingiberensis, J. Cleaner Prod., 16, 1133-1137. doi:10.1016/j.jclepro.2007.05.008.[WoS][Crossref]
  • 25. Sheng, J., Chi, Z.M., Yan, K.R., Wang, X.H., Gong, F., & Li, J., (2009). Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcusaureus G7a in solid-state fermentation and hydrolysis of inulin. Bioproc. Biosyst. Eng., 32, 333-339. DOI: 10.1007/ s00449-008-0252-2.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.