PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 3 | 97-104
Article title

Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work the studies were performed on the intensity of fouling of the membrane NF90 and NF270 depending on the value of dynamic contact angle, previously determined for these membrane. The NF membranes were used for the separation of broth obtained during the fermentation of glycerol by Lactobacilluscasei bacteria. The measurements of dynamic contact angle were carried out using the Wilhelmy plate method. Taped membranes samples (support layer to support layer), wetted for 2 days in deionized water prior to testing, were used to study the contact angle of top layer and its organic fouling. Using deionized water; the contact angle values equal to 27-30o and 53-57o for NF270 and NF90, respectively, were obtained. As a consequence of adsorption of organic compound on the membrane surfaces, the contact angle obtained for both fouled membranes was about 55-56o, and this value was closer to the contact angle of non-fouled NF90 membrane. Therefore, the NF90 membrane was more resistant to organic fouling during the separation of broth.
Publisher

Year
Volume
14
Issue
3
Pages
97-104
Physical description
Dates
published
1 - 10 - 2012
received
accepted
online
31 - 10 - 2012
Contributors
author
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland, Marek.Gryta@zut.edu.pl
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • Yale University (USA), The Department of Molecular, Cellular and Developmental Biology
References
  • 1. Drioli, E., Curcio, E., Criscuoli, A. & Di Profi o, G. (2004). Integrated system for recovery of CaCO3, NaCl, MgSO4 7H2O from nanofi ltration retentate. J. Membr. Sci., 239, 7-38. DOI: 10.1016/j.memsci.2003.09.028.[Crossref]
  • 2. Karakulski, K. & Gryta, M. (2005). Water demineralisation by NF/MD integrated processes. Desalination, 177, 109-119. 10.1016/j.desal.2004.11.018.
  • 3. Singh, R. Hybrid membrane systems for water purifi cation, Elsevier, Oxford 2006.
  • 4. Bellona, Ch., Marts, M. & Drewesa, J.E. (2010). The effect of organic membrane fouling on the properties and rejection characteristics of nanofi ltration. Sep. Purif. Technol., 74. 44-54. doi:10.1016/j.seppur.2010.05.006.[Crossref][WoS]
  • 5. Schäfer, A.I., Fane, A.G. & Wait, T.D. (eds.) (2005). Nanofi ltration: Principles and Application. Elsevier, Oxford.
  • 6. Gryta, M. (2008). Fouling in direct contact membrane distillation, J. Membr. Sci., 325, 383-394. doi:10.1016/j.memsci. 2008.08.001.[Crossref]
  • 7. Xu, P., Drewes, J.E., Kim, T.U., Bellon, Ch. & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci., 279. 165-175. doi:10.1016/j.memsci.2005.12.001.[Crossref]
  • 8. Gryta, M. (2008). Chemical pretreatment of feed water for membrane distillation. Chem. Pap., 62, 100-105. DOI: 10.2478/s11696-007-0085-5.[WoS][Crossref]
  • 9. Mänttäri, M., Pekuri, T. & Nyström, M. (2004). NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effl uents from the paper industry. J. Membr. Sci., 242, 107-116. doi:10.1016/j.memsci.2003.08.032.[Crossref]
  • 10. Lee, W., Hoon Ahn, Ch., Hong, S., Kim, S., Lee, S., Baek, Y. & Yoon, J. (2010). Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no fi ltration condition. J. Membr. Sci., 351, 112-122. DOI:10.1016/j.memsci.2010.01.035.[Crossref]
  • 11. Lee, S., Lee, E., Elimelech, M. & Hong, S. (2011). Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling. J. Membr. Sci., 366, 17-24. doi:10.1016/j.memsci.2010.09.024.[Crossref]
  • 12. Subramani, A., Huang, X., & Hoek, E.M.V. (2009). Direct observation of bacterial deposition onto clean and organicfouled polyamide membranes. J. Colloid and Inter. Sci., 336, 13-20. doi:10.1016/j.jcis.2009.03.063.[Crossref]
  • 13. Chang, E.-E., Chen, Y.-W., Lin, Y.-L., & Chiang, P.-Ch. (2009), Reduction of natural organic matter by nanofi ltration process, Chemosphere, 76, 1265-1272. doi:10.1016/j.chemosphere. 2009.04.053.[Crossref][WoS]
  • 14. Boussu, K., Zhang, Y., Cocquyt, J., Van der Meeren, P., Volodin, A., Van Haesendonck, C., Martens, J.A. & Van der Bruggen, B., (2006). Characterization of polymeric nanofi ltration membranes for systematic analysis of membrane performance. J. Membr. Sci., 278, 418-427. doi:10.1016/j. memsci.2005.11.027.[Crossref]
  • 15. Boussu, K., Van der Bruggen, B., Volodin, A., Snauwaert, J., Van Haesendonck, C. & Vandecasteele, C. (2005). Roughness and hydrophobicity studies of nanofi ltration membranes using different modes of AFM. J. Colloid Interf. Sci., 286, 632-638. doi:10.1016/j.jcis.2005.01.095.[Crossref]
  • 16. Nghiem, L.D., Schafer, A.I. & Elimelech, M. (2005). Nanofi ltration of hormone mimicking trace organic contaminants. Sep.Sci. Technol., 40, 2633-2649. DOI:10.1080/01496390500283340.[Crossref]
  • 17. Subramania, A. & Hoekb, E.M.V. (2008). Direct observation of initial microbial deposition onto reverse osmosis and nanofi ltration membranes. J. Membr. Sci., 319, 111-125. doi:10.1016/j.memsci.2008.03.025.[WoS][Crossref]
  • 18. Palacio, L., Calvo, J.I., Pradanos, P., Hernandez, A., Vaisanen, P. & Nystrom, M. (1999). Contact angles and external protein adsorption onto UF membranes. J. Membr. Sci. 152, 189-201. doi:10.1016/SO376-7388(98)00203-8.[Crossref]
  • 19. Rosa, M.J. & de Pinho, M.N. (1997). Membranes surface characterization by contact angle measurements using the immersed method. J. Membr. Sci., 131, 167-180. doi:101016/ SO376-7388(97)00043-4.
  • 20. Lee, E., Lee, S. & Hong, S. (2010). A new approach to the characterization of reverse osmosis membrane by dynamic hysteresis. Desalin. Water Treat., 18, 257-263. doi:10.5004/ dwt.2010.1782.[Crossref]
  • 21. Huang, F.L., Wang, Q.Q., Wei, Q.F., Gao, W.D., Shou, H.Y. & Jiang, S.D. (2010). Dynamic wettability and contact angles of poly(vinylidene fl uoride) nanofi ber membranes grafted with acrylic acid, eXPRESS Polymer Letters. 4 (9), 551-558. DOI:10.3144/expresspolymlett.2010.69.[WoS][Crossref]
  • 22. Zawodzinski, T.A., Gottesfeld, S., Shoichet, S. & McCarthy, T.J. (1993). The contact angle between water and the surface of perfl uorosulphonic acid membranes, J. Applied.Electrochem., 23, 86-88. DOI: 10.1007/BF00241582.[Crossref]
  • 23. Wang, K.Y., Foo, S.W. & Chung, T.S. (2009). Mixed matrix PVDF hollow fi ber membranes with nanoscale pores for desalination through direct contact membrane distillation. Ind. Eng. Chem. Res., 48, 4474-4483. DOI: 10.1021/ie8009704.[Crossref][WoS]
  • 24. Hajibabania, S., Verliefde, A., McDonald, J.A., Khan, S.J. & Le-Clech, P. (2011). Fate of trace organic compounds during treatment by nanofi ltration. J. Membr. Sci., 373, 130-139. doi:10.1016/j.memsci.2011.02.040.[Crossref]
  • 25. Wade, L.G. (2010). Organic chemistry, 7 th. ed., Pearson Prentice Hall, NY USA.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-012-0091-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.