Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 3 | 88-96

Article title

The effect of process conditions on the flocculation process occurring in an agitated vessel


Title variants

Languages of publication



The effect of flocculation time, flocculant dosage, pollutant concentration, mixing intensity and tank size on flocculation performance was experimentally studied in a mechanically agitated vessel. The macroscopic approach was applied for fl occulation modelling. The simple semi-empirical generalized correlation for flocculation kinetics proposed by Šulc (2003a) and the simple semi-empirical generalized correlation quantifying the effect of flocculation time and flocculant dosage on fl occulation proposed by Šulc, Ditl (2007) were used for data treatment.









Physical description


1 - 10 - 2012
31 - 10 - 2012


  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 166 07 Prague, Czech Republic
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 166 07 Prague, Czech Republic


  • 1. Thomas, D.N., Judd, S.J. & Fawcett, N. (1999). Flocculation modelling: a review. Water Res. 33(7), 1579-1592. DOI: 10.1016/S0043-1354(98)00392-3.[Crossref]
  • 2. von Smoluchowski, M. (1917). Versuch einer mathematischen theorie der koagulations - kinetics kolloid lösungen. Z.Phys. Chem. 92, 129-168.
  • 3. Šulc, R. & Ditl, P. (2008). The effect of fl occulent dosage onto fl occulation kinetics. Czasopismo Techniczne - Seria:MECHANIKA 105(2), 341-349.
  • 4. Šulc, R. (2003). Flocculation in a turbulent stirred vessel. Ph.D. Thesis, Czech Technical University in Prague, Prague, Czech Republic.
  • 5. Šulc, R. & Ditl, P. (2007). Flocculation of clay slurry in a vessel agitated by Rushton turbine: effect of clay concentration at mixing intensity 40 W/m3. In 34th International Conference of the Slovak Society of Chemical Engineering SSCHE 2007, 21-25 May 2007. Tatranske Matliare, Slovak Republic: Slovak Society of Chemical Engineering.
  • 6. Bernhardt, H. & Schell, H. (1993). Effects of energy input during orthokinetic aggregation on the fi lterability of generated fl ocs. Water Sci. Technol. 27(10), 35-65.
  • 7. Camp, T.R. (1955). Flocculation and fl occulation basins. Trans. ASCE 120(1), 1-16.
  • 8. Ives, K.J. (1968). Theory and operation of sludge blanket clarifi ers. Proc. Inst. Civ. Eng. 39(2), 243-260.[Crossref]
  • 9. Argaman, Y. & Kaufman W.J. (1970). Turbulence and fl occulation. J. Sanit. Eng. Div. ASCE. 96(2), 223-241.
  • 10. Lai, R.J. (1975). Physical aspects of mixing in coagulationcontrol. PhD. thesis (part), University of Florida, USA.
  • 11. Cleasby, J.L. (1984). Is velocity gradient a valid turbulent fl occulation parameter? J. Environ. Eng. ASCE, 110(5), 875-897. DOI: 10.1061/(ASCE)0733-9372(1984)110:5(875)[Crossref]
  • 12. Clark, M.M. (1985). Critique of Camp and Stein´s RMS velocity gradient. J. Environ. Eng. ASCE 111(6), 741-754. DOI: 10.1061/(ASCE)0733-9372(1985)111:6(741)).[Crossref]
  • 13. Lee, S.I., Seo, I.S. & Koopman, B. (1994). Effect of mean velocity gradient and mixing time on particle removal in seawater induced fl occulation. Water Air Soil Poll. 78(1-2), 179-188. DOI: 10.1007/BF00475676.[Crossref]
  • 14. Lin, S.D. & Lee C.C. (2001). Water and wastewater calculationsmanual. USA: McGraw Hill. ISBN 978-0071371957
  • 15. We iner, R.F. & Matthews, R. (2003). EnvironmentalEngineering (4thed.) Boston, USA: Butterworth, Heinemann. ISBN 978-0080494777
  • 16. Bache, D.H. & Gregory, R. (2007). Flocs in water treatment. London, UK: IWA Publishing. ISBN: 978-1843390633
  • 17. Šulc, R. & Ditl, P. (2002). Effect of Mixing and Flocculation Time onto Flocculation Kinetics and Flocculant Dosage - Rushton turbine. In 15th International Congress of Chemical and Process Engineering CHISA 2002, 25-29 August 2002. Prague, Czech Republic: Czech Society of Chemical Engineering
  • 18. Šulc, R. & Ditl, P. (2003). Model kinetiky fl okulace ve statickém směšovači - studie. In 7th International Scientifi c Conference Mechanical Engineering, 5-6 November 2003 (pp. 1-6). Bratislava, Slovak Republic: Slovak University of Technology.
  • 19. Suharyono, H. & Hogg, R. (1996). Flocculation in fl ow through pipes and in-line mixers. Miner. Metall. Proc. 13, 93-97.
  • 20. Šulc, R. & Ditl, P. (2004). Vliv dávky fl okulantu na fl okulaci - návrh a ověření generalizované korelace. In 8th International Scientifi c Conference Mechanical Engineering, September 2004. Bratislava, Slovak Republic: Slovak University of Technology.
  • 21. Oldshue, J.Y. & Mady, O.B. (1978). Flocculation performance of mixing impellers. Chem. Eng. Prog. 74, 103-108.
  • 22. Ducoste, J.J. & Clark, M.M. (1998). The infl uence of tank size and impeller geometry on turbulent fl occulation: I. Experimental. Environ. Eng. Sci. 15(3), 215-224. DOI: 10.1089/ ees.1998.15.215.[Crossref]
  • 23. Šulc, R. & Ditl P. (2009). Scale up of clay slurry fl occulation in an agitated tank. Chemical and Process Engineering(Inżynieria chemiczna i procesowa) 30(3), 443-451.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.