Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 3 | 71-76

Article title

Modeling of heat and mass transfer in LaNi5 matrix during hydrogen absorption-desorption cycle

Content

Title variants

Languages of publication

EN

Abstracts

EN
Packed bed reactors using metal hydride are attracting a lot of attention as potential hydrogen storage systems. Some operational and design variables are major constraints to obtain a proper infl ow/outfl ow of hydrogen into a metal hydride reactor. These variables include packed bed thermal conductivity, porosity, pressure and temperature distributions in the reactor during the absorption/desorption cycle. They also cause a mechanical stress induced by temperature gradient. In this paper, two dimensional models are implemented in COMSOL multiphysics to simulate the hydrogen fl ow, pressure and temperature distributions in the packed bed reactor during absorption/desorption cycle. Also, stresses in porous metal hydride induced by temperature variation in the heating/cooling cycle were evaluated. A possible effect of stress induced, porosity changes on diffusion and heating of hydrogen in both radial and axial direction in packed bed is discussed. The model consists of a system of partial differential equations (PDE) describing structural mechanics of stress, heat and mass transfer of hydrogen in the porous matrix of the packed bed reactor.

Publisher

Year

Volume

14

Issue

3

Pages

71-76

Physical description

Dates

published
1 - 10 - 2012
received
accepted
online
31 - 10 - 2012

Contributors

  • Tshwane University of Technology, Department of Chemical & Metallurgical Engineering, Pretoria 0001, South Africa
  • Tshwane University of Technology, Department of Chemical & Metallurgical Engineering, Pretoria 0001, South Africa

References

  • 1. Momirian, M. & Vesiroglu,T.N, Renewable Sustainable Energy (2002), Rev6, 141-179. Doi:10.1016/j. ijhydene.2011.01.008.6.[Crossref]
  • 2. Jemni, A. & Nasrallah, B.S. Study of 2- Dimensional Heat transfer and Mass transfer during absorption in a metal - Hydrogen Reactor.Int.j.Hydrogen Energy(1995),20(1), 43-52 .Doi:10.1016/0360-3199(93) E0007-8.[Crossref]
  • 3. Aldas, K., Mat, M.D. & Kaplan, Y. Three Dimensional mathematical model for absorption in a metal hydride bed. Int. J.Hydrogen Energy (2002), 27(10), 1049-1056.Doi:10.1016/j.ijhydene.2008.12.096.[Crossref]
  • 4. Mayer, U., Grol, M. & Supper, W. Journal of less common metals (1987), vol44, 131-235.
  • 5. Nakagawa, T., Inomata, A., Aoki, H. & Miura, T. Numerical analysis of heat and mass transfer characteristics in the metal hydride bed. Int. journal. Hydrogen Energy (2002).25(4), 339-350.Doi:-org/10.1016/so360- 3199 (99) 0036-1.
  • 6. Suda, S., Kobayashi, N., Morishita, E. & Takanmoto, N. Journal of less- common metals (1983), vol32, 89-325. Doi/abs/10.1111/j.1440.
  • 7. Marty, P., Fourmigue, J.F, De Rango, P., Fruchart, D. & Charbouner, J., Numerical simulation of heat and mass transfer during the absorption of hydrogen in a magnesium hydride. Energy conversion and management (2006), Vol 47, 3632-3643.
  • 8. www.comsol.com.
  • 9. Jenni, A., Contribution a letude des transfer de chaleur et de masse dans inreacteur metal - hydrogen(1997).
  • 10. Askri, F., ben Salam, M., Jenni, A. & ben Nasrallah, S., Optimization of hydrogen storage in metal hydride tanks, International journal of hydrogen Energy 34(899), (2009).doi:10.1016/j.ijhydene. 2008.11.021[Crossref]
  • 11. Mahmut Mata, D. & Yuksel Kaplan, Numerical study of hydrogen absorption in an lm-Ni5 hydride reactor, international journal of hydrogen Energy, 26, (2001) 957-963. Doi/10.1016/j.ijhydene.2008.11.021.[Crossref]
  • 12. Chung, C.A., C,J, HO,Thermal fl uid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage. Doi/10.1016/SO360-3199 (01) 0030-1.[Crossref]
  • 13. Aldas, K., Mat, M.D. & Kaplan, Y., A three dimensional mathematical model for absorption in a metal hydride bed. Int.J. Hydrogen Energy, 27, (2002) 1049-1056. Doi/10.1016/j.ijhydene.2011.12.140.[Crossref]
  • 14. Dhaoua, H., Mlloulia, S., Askaria, F., Jemni, A. & Ben Nasrallaha, S. Int.J.Hydrogen Energy, 32, (2007) 1922. Doi:/10.1016/j.ijhydene.2006.08.045.
  • 15. Forde, T., Modeling of Metal hydride storage Norstoreconference/ workshop (2005), int.J.HydrogenEnergy32,1041( 2007).Doi:/10.1016/j.ijhydene.2006.07.015.
  • 16. Hahne, E. & Kallweit, J., thermal conductivity of metal hydride materials for storage of hydrogen Int.J.Hydrogen Energy 23, 107(1998).Doi:10.1016/so360-3199 (97) 00020-7. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0087-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.