Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 3 | 21-28

Article title

Novel Calix[4]arene network resin for Cr(VI) ions Remediation: A Response Surface Approach


Title variants

Languages of publication



Novel Calix[4]arene Netwok (NCN) resin has been synthesized using Amberlite XAD-2 as the starting material. Hydroxyl groups have been introduced onto the para position of alkylated phenyl ring of Amberlite XAD-2 followed by the condensation to NCN by reacting it with formaldehyde. The NCN resin has been used for the remediation of Cr(VI) contaminated water using factorial design approach. A face-centered Draper-Lin composite design predicted ~100% removal effi ciency at optimum variables (the initial concentration of Cr(VI) ion 10 mg/l sorbent dose 200 mg, agitation time 136 min and pH 2). The accuracy and the fi tting of the model were evaluated by ANOVA and R2 (0.9992) values. The 99.5% removal effi ciency has been achieved experimentally at the optimum values of the variables. The Langmuir and D-R isotherm models were applicable to the sorption data with the value of RL and the sorption free energy 0.0057-0.1 and 7.93 kJ/mol respectively, suggesting favorable and physical/ion-exchange nature of the sorption. The calculated sorption capacity was 176.1±2.4 mg/g. The recycling studies of NCN resin showed that the multiple use of resin is feasible. Effect of concomitants has also been studies and proposed method was applied successfully for removal (98.7%) of Cr (VI) from electroplating wastewater.









Physical description


1 - 10 - 2012
31 - 10 - 2012


  • University of Sindh, M.A. Kazi Institute of Chemistry, Jamshoro, Pakistan
  • University of Sindh, M.A. Kazi Institute of Chemistry, Jamshoro, Pakistan 2 University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan


  • 1. Cronje, K.J., Chetty, K., Carsky, M., Sahu, J.N. & Meikap, B.C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275(1-3), 276-284. DOI: 10.1016/j.desal.2011.03.019.[WoS][Crossref]
  • 2. Arica, M.Y. & Bayramoglu, G. (2005). Cr(VI) biosorption from aquous solution using free and immobilized biomass of Lentinussajor-caju: preparation and kinetic characterization. Colloid.Surf.A. 253(1-3), 203-211. DOI: org/10.1016/j.colsurfa. 2004.11.012.[Crossref]
  • 3. Bayramoglu, G., Celik, G., Yalcin, E., Yilmaz, M. & Arica, M.Y. (2005). Modifi cation of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal effi ciencies from aqueous medium. J. Hazard. Mater. 119(1-3) 219-229. DOI: 10.1016/j. jhazmat.2004.12.022.[Crossref]
  • 4. Bayramoglu, G. & Arica, M.Y. (2011). Synthesis of Cr(VI)- -imprinted poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: Its adsorption propensity to Cr(VI). J. Hazard. Mater. 187(1-3), 213-221. DOI: 10.1016/j.jhazmat.2011.01.022.[WoS][Crossref]
  • 5. Ahmad, H.B., Mohammad, S.H.i, Masoud, S.G., Somayye, Z. & Hosseini, E.H.H.B. (2010). Kinetics, equilibrium and thermodynamic study of Cr(VI) sorption into toluidine blue o-impregnated XAD-7 resin beads and its application for the treatment of wastewaters containing Cr(VI). Chem. Eng. J. 160(1), 190-198. DOI: 10.1016/j.cej.2010.03.040.[Crossref]
  • 6. Uluozlua, O.D., Tuzen, M., Mendil, D., Kahveci, B. & Soylak, M. (2009). 3-Ethyl-4-(p-chlorobenzylidenamino-4,5- dihydro-1H-1,2,4-triazol-5-one (EPHBAT) as precipitant for carrier element free coprecipitation and speciation of chromium( III) and chromium(VI). J. Hazard. Mater. 172(1), 395-399. DOI: 10.1016/j.jhazmat.2009.07.021.[WoS][Crossref]
  • 7. Suhong, C., Qinyan, Y., Baoyu, G., Qian, L. & Xing, X. (2011). Removal of Cr(VI) from aqueous solution using modifi ed corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study. Chem.Eng.J.168, 909-917. DOI: 10.1016/j. cej.2011.01.063.[Crossref]
  • 8. Korngold, E., Belayev, N. & Aronov, L. (2003). Removal of chromates from drinking water by anion exchangers. Sep. Purif.Technol. 33(2), 179-187. DOI: 10.1016/S1383-5866(03)00006-6.[Crossref]
  • 9. Serpil, E. & Erol, P. (2010). Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 161(1-2), 161-166. DOI: 10.1016/j.cej.2010.04.059.[Crossref]
  • 10. Narin, I., Kars, A. & Soylak, M. (2008). A novel solid phase extraction procedure on Amberlite XAD-1180 for speciation of Cr(III), Cr(VI) and total chromium in environmental and pharmaceutical samples. J. Hazard. Mater. 150(2), 453-458. DOI: 10.1016/j.jhazmat.2007.04.125.[Crossref]
  • 11. Manjusha, K. & Reeta, V.R. (2007). Amberlite XAD- 2 Impregnated with Cyanex302 for Separation of Traces of Thorium(IV) Sep. Sci. Technol. 42(10), 2255-2273. DOI: 10.1080/01496390701310439.[WoS][Crossref]
  • 12. Gonzalez, M.E.L. & Arribas, L.V.P. (2000). Chemically modifi ed polymeric sorbents for sample Preconcentration; J.Chromatogr. A 902(1) 3-16. DOI: 10.1016/S0021-9673(00)00942-0.[Crossref]
  • 13. Katheline, O.V. F., Alcino, P. D. A., Monica, R.M.P.D.A. & Luiz, C.D.S.M. (2007). Microwave assisted Friedel-Crafts acylation reactions of Amberlite XAD-4™ resin, Mater. Lett. 61(4-5) 1190-1196. DOI: 10.1016/j.matlet.2006.06.081.[WoS]
  • 14. Saima Q. M., Bhanger, M.I., Hasany, S.M., & Khuhawar, M.Y. (2007). The effi cacy of nitrosonaphthol functionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions. Talanta 72, 1738-1745. DOI: http://dx.doi. org/10.1016/j.talanta.2006.12.017.[Crossref][WoS]
  • 15. Siyal, A.N., Memon, S.Q. & Khaskheli, M.I. (2012). Optimization and equilibrium studies of Pb(II) removal by grewia asiatica seed: A factorial design approach. Polish J.Chem. Tech. 14(1), 17-77. DOI: 10.2478/v10026-012-0062-9.[Crossref]
  • 16. Tan, I.A.W., Ahmad, A.L, & Hameed, B.H. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem. Eng. J. 137(3), 462-470. DOI: 10.1016/j.cej.2007.04.031.[Crossref]
  • 17. Sanchez-Martin, J., J. Beltrán-Heredia, J. & Carmona- -Murillo, C. (2011). Adsorbents from Schinopsis balansae: Optimization of signifi cant variables. Ind. Crop. Prod. 33(2) 409-417. DOI:10.1016/j.indcrop.2010.10.038.[WoS][Crossref]
  • 18. Box, G.E.P. & Hunter, W.G. (1987) Statistics for Experiments:An Introduction to Design, Data Analysis and ModelBuilding. Wiley Interscience, New York.
  • 19. Luis, K.C., Ramelito, C.A., Johannes, L.L.R., Marcel, O. & Van- der-Wielen, L.A.M. (2001). Potential of biosorption for the recovery of chromate in industrial wastewaters. Ind.Eng. Chem. Res. 40(10), 2302-2309. DOI: 10.1021/ie0008575.[Crossref]
  • 20. Saban, M.T. (2011). Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem. Eng. J. 168(3), 1234-1240. DOI: 10.1016/j.cej.2011.02.021.[Crossref]
  • 21. Saima, Q.M., Hasany, S.M., Bhanger, M.I. & Khuhawar, M.Y. (2005). Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. J. Colloid Interf.Sci. 291(1), 84-91. DOI: 10.1016/j.jcis.2005.04.112.[Crossref]
  • 22. Saeed, M.M. (2003). Adsorption profi le and thermodynamic parameters of the preconcentration of Eu(III) on 2-thenoyltrifl uoroacetone loaded polyurethane (PUR) foam. J. Radioana. Nucl. Chem. 256(1), 73-80. DOI: 0236-5731/2003/ USD 20.00.
  • 23. Duranoĝlu, D., Buyruklardan Kaya, T.G., Beker, U. & Şenkal, B.F. (2012). Synthesis and adsorption properties of polymeric and polymer-based hybrid adsorbent for hexavalent chromium removal. Chem. Eng. J. (181-182), 103-112. DOI: org/10.1016/j.cej.2011.11.028.[Crossref]
  • 24. Nuriye, K., Mustafa, S., Gulsin A. & Ismet, H.U. (2012). Synthesis of crosslinked chitosan possessing schiff base and its use in metal removal. J. Inorg. Organomet. Polym. 22, 166-177. DOI: 10.1007/s10904-011-9509-3.[Crossref][WoS]
  • 25. Kumar, A.S., Rajesh, N., Kalidhasan, S. & Rajesh, V. (2011). An enhanced adsorption methodology for the detoxifi - cation of chromium using n-octylamine impregnated Amberlite XAD-4 polymeric sorbent. J. Environ. Sci. Health., Part A 46 (13), 1598-1610. DOI: 10.1080/10934529.2011.609460.[Crossref][WoS]
  • 26. Kaya, I.G.B., Duranoglu, D., Beker, U. & Senkal, B.F. (2011). Development of polymeric and polymer-based hybrid adsorbents for chromium removal from aqueous solution. Clean- Soil, Air, Water 39 (11), 980-988. DOI: 10.1002/clen.201000552.[Crossref][WoS]
  • 27. Pakade, V., Cukrowska, E., Darkwa, J., Torto, N. & Chimuka, L. (2011). Selective removal of chromium (VI) from sulphates and other metal anions using an ion-imprinted polymer. Water SA 37 (4), 529-538. DOI: org/10.4314/wsa.v37i4.11.[WoS][Crossref]
  • 28. Rajesh, N., Kumar, A.S.K., Kalidhasan, S. &Vildya, R. (2011). Trialkylamine impregnated macroporous polymeric sorbent for the effective removal of chromium from industrial wastewater. J. Chem. Eng. Data 56 (5), 2295-2304. DOI: 10.1021/je1012873.[Crossref][WoS]
  • 29. Agrawal, P. & Bajpai, A.K. (2011). Synthesis of iron oxide based gelatin nanocomposites and their applications in removal of Cr (VI) ions from aqueous solutions. J. Macromol.Sci. Part A Pure Appl. Chem. 48 (1), 47-56. DOI: org/10.1080 /10601325.2011.528308.[Crossref]
  • 30. Ozcan, S., Tor, A. & Aydin, M.E. (2010). Removal of Cr(VI) from aqueous solution by polysulfone microcapsules containing Cyanex 923 as extraction reagent. Desalination 259 (1-3), 179-186. DOI: org/10.1016/j.desal.2010.04.009.[WoS][Crossref]
  • 31. Bayramoglu, G.& Yakup, A.M. (2008). Adsorption of Cr(VI) onto PEI immobilized acrylate-based magnetic beads: Isotherms, kinetics and thermodynamics study. Chem. Eng. J. 139 (1), 20-28. DOI: org/10.1016/j.cej.2007.07.068.[Crossref]
  • 32. Lee, M.-Y., Hong, K.-J., Shin-Ya, Y. & Kajiuchi, T. (2005). Adsorption of hexavalent chromium by chitosan-based polymeric surfactants. J. Appl. Polym. Sci. 96 (1) 44-50. DOI: 10.1002/app.21356.[Crossref]
  • 33. Adhikari, B.B., Gurung, M., Kawakita, H., Jumina & Ohto, K. (2011). Methylene cross linked calix[6]arene hexacaarboxylic acid resin: A highly effi cient solid phase extract ant for decontamination of lead bearing effl uents. J. Hazard.Mater. 193, 200-208. DOI: org/10.1016/j.jhazmat.2011.07051.[Crossref]
  • 34. Enise, A., Serkan, E. & Mustafa, Y. (2011). Immobilization of novel the semicarbazone derivatives of calix[4] arene onto magnetite nanoparticles for removal of Cr(VI) ion. J. Incl. Phenom. Macrocycl. Chem. (1-10). DOI: 10.1007/ s10847-011-0083-7.[WoS][Crossref]
  • 35. Mustafa, T., Mustafa, E. & Mustafa, Y. (2006). A calix[4] arene-containing polysiloxane resin for removal of heavy metals and dichromate anion. J. Macromol. Sci. Part A Pure Appl.Chem. 43, 57-69. DOI: 10.1080/1060132050040590.[Crossref]
  • 36. Mustafa, T. (2008). Immobilization of calix[6]arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr(VI). J. Incl. Phenom.Macrocycl. Chem. 61, 53-60. DOI: 10.1007/s10847-007-9392-2.[Crossref][WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.