PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 2 | 42-48
Article title

Heterogeneous photocatalytic removal and reaction kinetics of Rhodamine-B dye with Au loaded TiO2 nanohybrid catalysts

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Heterogeneous photocatalytic removal of Rhodamine-B (RhB) dye by metallic Au nanopatrticles deposited TiO2 photocatalyst was studied. For this study, a chemical reduction method by hydrazine hydrate for gold deposition was employed in order to synthesize Au/TiO2 nanocomposite system. For the characterization of the synthesized nanomaterials, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), the Fourier transformation infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PLS) techniques were performed. The obtained results show that the deposition of gold onto TiO2 surface could effectively inhibit the recombination of the photoinduced electron and holes, improving the absorption capability for the visible light source and leading to the increased surface OH group density. The degradation experiment reveals that the efficiency of color removal from RhB aqueous solution containing Au/TiO2 powders for the photocatalytic bleaching of RhB dye is more efficient than that of bare TiO2 sample upon UV-vis light activation. In addition, degradation kinetics of RhB dye in aqueous suspensions can be well simulated by the Langmuir-Hinshelwood model and obeys the pseudo-first order law, with a decolorization rate of 0.0252 min-1 to the photocatalytic removal of RhB dye.
Publisher

Year
Volume
14
Issue
2
Pages
42-48
Physical description
Dates
published
1 - 1 - 2012
online
2 - 7 - 2012
Contributors
  • College of Science, Huazhong Agricultural University, Hubei 430070, PR China
References
  • Li, Q., Mahendra, S., Lyon, D., Brunet, L., Liga, M., Li, D. & Alvarez, P. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water. Res. 42, 4591-4602. DOI: 10.1016/j.Watres.2008.08.015.[Crossref][WoS]
  • Lryba, B., Brożek, P., Piszcz, M. & Morawski, A. W. (2011). New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Pol. J. Chem. Tech. 13(4), 8-14. DOI: 10.2478/v10026-011-0042-5.[Crossref]
  • Li, X., Wang, L. & Lu, X. (2010). Preparation of silver-modified LiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J. Hazard. Mater. 177, 639-647. DOI: 10.1016/j.jhazmat.2009.12.080.[Crossref]
  • Chan, S. & Barteau, M. (2005). Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir. 21(12), 5588-5595. DOI: 10.1021/la046887k.[Crossref]
  • Hou, L. R., Yuan, C. Z. & Peng, Y. (2007). Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. 139, 310-315. DOI: 10.1016/j.jhazmat.2006.06.035.[Crossref]
  • Li, J. & Zeng, H. C. (2006). Preparation of Monodisperse Au/TiO2 Nanocatalysts via Self-Assembly. Chem. Mater. 18(18), 4270-4277. DOI: 10.1021/cm060362r.[Crossref]
  • Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H. & Lu, Y. (2007). Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129(15), 4538-4539. DOI: 10.1021/ja069113u.[Crossref]
  • Jain, R., Mathur, M., Sikarwar, S. & Mittal, A. (2007). Removal of the hazardous dye Rhodamine B from photocatalytic and adsorption treatments. J. Environ. Manag. 85, 956-964. 10.1016/j.jenvman.2006.11.002.
  • Zhang, X. T., Zhou, G. W., Zhang, H. Y., Wu, C. C. & Song, H. B. (2011). Characterization and activity of visible light-driven TiO2 photocatalysts co-doped with nitrogen and lanthanum. Transition. Met. Chem. 36, 217-222. DOI: 10.1007/s11243-010-9457-8.[WoS][Crossref]
  • Yusuke, I., Mizuki, M. & Makoto. O. (2010). Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate. J. Am. Chem. Soc. 132(47), 16762-16764. DOI: 10.1021/ja1083514.[Crossref]
  • Li, F. B. & Li, X. Z. (2002). The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere. 48(10), 1103-1111. DOI: 10.1016/S0045-6535(02)00201-1.[Crossref]
  • Zhong, H. E., Yang, S. G., Ju, Y. M. & Sun. C. (2009). Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. J. Environ. SCi. 21(2), 268-272. DOI: 10.1016/S1001-0742(08)62262-7.[Crossref]
  • Pedro, J. S., Valente, S., Padilha, P. M. & Florentino, A. O. (2006). Studies in the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere. 64(7), 1128-1133. DOI: 10.1016/j.chemosphere.2005.11.050.[Crossref]
  • Tsunoyama, H., Ichikuni, N. & Tsukuda, T. (2008). Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, ~1 nm Gold Clusters. Langmuir. 24(20), 11327-11330. DOI: 10.1021/-la801372j.[WoS][Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-012-0069-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.