Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 1 | 65-70

Article title

Biodiesel production from Argemone mexicana seed oil using crystalline manganese carbonate


Title variants

Languages of publication



This communication explores the feasibility of biodiesel production from a weed plant Argemone mexicana seed oil and an efficient catalyst crystalline manganese carbonate. To the best of the authors' knowledge, this is the first study making use of pure, crystalline, ash colored manganese carbonate as a heterogeneous catalyst for the production of methyl esters as fuel from Argemone mexicana seed oil. The optimum process conditions for the conversion of Argemone mexicana oil to its methyl ester by transesterification required 1% manganese carbonate as catalyst with alcohol to oil ratio 5:1 at 60°C to yield biodiesel of 99.99% purity. The methyl esters obtained were examined by Gas chromatography analysis.









Physical description


1 - 1 - 2012
3 - 4 - 2012


  • Department of chemistry, Government city college, Hyderabad- 500 002, India
  • School of chemical sciences, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded- 431 606, India
  • Department of chemistry, Government city college, Hyderabad- 500 002, India
  • Department of chemistry, Government city college, Hyderabad- 500 002, India
  • School of chemical sciences, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded- 431 606, India


  • Singh, D. & Singh, S. P. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews. 14, 200-216, doi:10.1016/j.rser.2009.07.017.[Crossref]
  • Stamenković, O. S., Veličković, A. V. & Veljković, V. B. (2011). The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel. 90,3141-3155, doi:10.1016/j.fuel.2011.06.049.[Crossref]
  • Ramachandran, K., Sivakumar, P., Suganya, T. & Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology. 102 (15),7289-7293, doi:10.1016/j.biortech.2011.04.100.[PubMed][Crossref]
  • Taufiqurrahmi, N., Mohamed, A. R. & Bhatia, S. (2011). Nanocrystalline zeolite beta and zeolite y as catalysts in used palm oil cracking for the production of biofuel. Journal of Nanoparticle Research. 13 (8), 3177-3189, doi:http://dx.doi.org/10.1007/s11051-010-0216-8.[WoS]
  • Singh, D. & Singh, S. P. (2010). Low cost production of ester from non edible oil of Argemone mexicana. Biomass & Bioenergy. 34, 545-549. doi:10.1016/j.biombioe.2009.12.021.[WoS][Crossref]
  • Usher, G. A. (1974). Dictionary of plants used by man. Constable. ISBN 0094579202. Frohlish, A. & Rice B (2005). Industrial Crops and Products. 21, 25-31, doi:10.1016/j.indcrop.2003.12.004.[Crossref]
  • Dorado, M. P., Ballesteros, E., Almeida, J. A., Schellert, C., Lohrlein, H. P., & Krause, R. (2002). An alkali-catalyzed transesterification process for high free fatty acid waste oils. Transactions of the ASAE. 45(3), 525-529. ISSN 0001-2351 CODEN TAAEAJ.
  • Canakci, M. & Gerpen, J. V. (2001). Biodiesel production from oils and fats with high free fatty acid. Transactions of the ASAE 18, 515-527.
  • Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J. & Navarro, A. (2000). Catalytic production of biodiesel from soya-bean oil, used frying oil and tallow. Biomass & Bioenergy. 18, 515-527. doi: 10.1016/S0961-9534(00)00014-3.[Crossref]
  • Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K. (2001). Process Biochem. Ishizaki. 37-65.
  • Muniyappa, P. R., Brammer, S. C. & Noureddini, H. (1996). Improved conversion of plant oils and animal fats into biodiesel and co-product. Bioresour. Technol. 56, 19-24. doi: 10.1016/0960-8524(95)00178-6.[Crossref]
  • Graboski, M. S. & Mc Cormick, R. L. (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24, 125-129. doi:10.1016/S0360-1285(97)00034-8.[Crossref]
  • Fukuda, H., Kondo, A. & Noda, H. J. (2001). Biodiesel fuel production bytransesterification of oil: review. Biosci. Bioeng. 92, 205-216. doi:10.1016/S1389-1723(01)80288-7.[Crossref]
  • Ramadas, S., Jayaraj, S., & Muraleedharan, C. (2004). Use of vegetable oils as I. C. engine fuels-a review. Renewab Energy. 29, 727-742. doi:10.1016/j.renene.2003.09.008.[Crossref]
  • Ma, F. & Milford, A. H. (1999). Biodiesel production: a review. Bioresour. Technol. 70, 1-15. doi:10.1016/S0960-8524(99)00025-5.[Crossref]
  • Noureddeini, H. & Zhu, D. (1997). Kinetics of Transesterification of Soybean Oil. J. Am. Oil Chem. Soc. 74, 1457-1463. doi: 10.1007/s11746-997-0254-2.[Crossref]
  • Freedman Pryde, E. H., & Mounts, T. L. (1984). Transesterification kinetics of soybean oil variables affecting the yield of fatty acid esters. J. Am. Oil Chem. Soc. 61, 1638-1643.
  • Freedman, B., Butterfield, R. O., & Pryde, E. H. (1986). Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc. 63, 1375-80. doi: 10.1007/BF02679606.[Crossref]
  • Harrington, K. J. and D'Arcy-Evans, C. D. (1985). Transesterification in situ of sunflower oil. Ind. Eng. Chem. Prod. Res. Dev. 24(2), 314-318.[Crossref]
  • Stoffel, W., Chu, F., & Ahrens, E. H. (1959). Analysis of long-chain fatty acids by gasliquid chromatography. J. Anal. Chem. 31(2), 307-308.[Crossref]
  • Azam, M., Waris, A. & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy. 29, 293-302. doi:10.1016/j.biombioe.2005.05.001.[Crossref]
  • Schneider, R. C., Baldissrelli, V. Z., Trombetta, F., Mrtinelli, M. & Caramao, E. B. (2004). Optimization of gas chromatographic-mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation. Aanl. Chim. acta. 505, 223-226. doi:10.1016/j.aca.2003.10.070.[Crossref]
  • Boocock, G., Konar, S., Mao, V., Lee, C. & Eiiligan, S. (1998). Fast formation of high purity methyl esters from vegetable oils. J. Am. Oil Chem. Soc. 75, 1167-1172. doi: 10.1007/s11746-998-0130-8.[Crossref]
  • Pahl, G. (2005). Biodiesel: Growing new energy economy. Vermount: Chelsea Publishing Company, white river foundation.
  • Williams, K. A. (1926). Oils, fats and fatty foods. (4th ed.). London: J and A Churchill Ltd. 144.
  • Schinas, P., Karavalakis, G., Davaris, C., Anastopoulus, G,. Karonis, D., Zannikos, F., Stournas, S. & Lois, E., (2009). Biomass and Bioenergy. 33, 44-49. doi:10.1016/j.biombioe.2008.04.008.[Crossref]
  • Jacob, M.B (1958). The chemical analysis of food and food products (3rd ed). New York: D. Van Nostrand Company Ltd.
  • Hilditch, T. P. (1949). The industrial chemistry of fats and waxes (3rd ed.). London: Bailliere, Tindall and Cox. 318-383.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.