Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 1 | 50-56

Article title

Performance of silica aerogels modified with amino functional groups in PB(II) and CD(II) removal from aqueous solutions

Content

Title variants

Languages of publication

EN

Abstracts

EN
The adsorption behavior of Pb(II) and Cd(II) ions in aqueous solutions on silica aerogels modified with amino propyl triethoxysilane was investigated as a function of pH, contact time, adsorbate concentration and adsorbent dose. It was found that maximum adsorption of Pb(II) and Cd(II) ions occurs at pH 6.0 and pH 8.0, respectively. The optimum contact time to obtain equilibrium adsorption with the modified silica aerogel was experimentally found to be around 48h. Adsorption isotherms clearly indicated that the adsorption behavior of metals ions on the modified silica aerogels is fitted well with both the Langmuir and Freundlich isotherms. The maximum adsorption capacities of Pb(II) and Cd(II) on modified silica aerogel were found to be 45.45mg/g and 35.71mg/g, respectively. The results indicated that silica aerogels modified with amino functional groups can be used as an efficient adsorbent in the removal of metal ions such as Pb(II) and Cd(II) from aqueous solutions.

Publisher

Year

Volume

14

Issue

1

Pages

50-56

Physical description

Dates

published
1 - 1 - 2012
online
3 - 4 - 2012

Contributors

  • Department of Chemistry, Shahreza Branch, Professor of Analytical Chemistry, Islamic Azad University, Isfahan, Iran
  • Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
  • MSc of Analytical Chemistry, Department of Chemistry, Islamic Azad University, Shahreza Branch, Isfahan, Iran

References

  • Rangel-Porras, G., García-Magno, J. & González-Muñoz, M. (2010). Lead and cadmium immobilization on calcitic limestone materials. Desalination. 262(1-3), 1-10. DOI:10.1016/j.desal.2010.04.043.[Crossref][WoS]
  • Fu, F. & Wang, Q. (2010). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92(3), 407-418. DOI:10.1016/j.jenvman.2010.11.011.[Crossref]
  • Murugesan, A., Ravikumar, L. Sathyasel Vabala, V. Senthilkumar, P. Vidhyadevi, T. Kirupha, S. D. Kalaivani, S. Krithiga, S. & Sivanesan, S. (2011). Removal of Pb (II), Cu (II) and Cd (II) ions from aqueous solution using polyazomethineamides: Equilibrium and kinetic approach. Desalination. 271(1-3), 199-208. DOI:10.1016/j.desal.2010.12.029.[Crossref][WoS]
  • Viti, C., Pace, A. & Giovannetti, L. (2003). Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol. 46(1), 1-5. DOI: 10.1007/s00284-002-3800-z.[Crossref]
  • Wong, K., Lee, C. Low, K. & Haron, M. (2003). Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere. 50(1), 23-8. DOI:10.1016/S0045-6535(02)00598-2.[Crossref]
  • Arora, M., Kiran, B. Rani, S. RaniI, A. Kaur, B. & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 111(4), 811-5. DOI:10.1016/j.foodchem.2008.04.049.[WoS][Crossref]
  • World Health Organization. (2004). Guidelines for drinking-water quality, World Health Organization, Distribution and Sales Geneva 27 CH-1211 Switzerland. from
  • Sud, D., Mahajan, G. & Kaur, M. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review. Bioresour. Technol. 99(14), 6017-27. DOI:10.1016/j.biortech.2007.11.064.[Crossref][WoS]
  • Kawasaki, N., Tominaga, H. Ogata, F. & Kakehi, K. (2010). Removal of cadmium and copper by vegetable biomass treated with hydrochloric acid. Chem. Eng. J. 157(1), 249-53. DOI:10.1016/j.cej.2009.11.028.[Crossref]
  • Hajiaghababaei, L., Badiei, A. Ganjali, M. R. Heydari, S. Khaniani, Y. & Ziarani, G. M. (2011). Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA-15. Desalination. 266(1-3), 182-7. DOI:10.1016/j.desal.2010.08.024.[Crossref][WoS]
  • Naseem, R. & Tahir, S. (2001). Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 35(16), 3982-6. DOI:10.1016/S0043-1354(01)00130-0.[Crossref]
  • Mahmoud, M. E., Osman, M. M. Hafez, O. F. Hegazi, A. H. & Elmelehgy, E. (2010). Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination. 251(1-3), 123-30. DOI:10.1016/j.desal.2009.08.008.[Crossref][WoS]
  • Srivastava, N. & Majumder, C. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151(1), 1-8. DOI:10.1016/j.jhazmat.2007.09.101.[Crossref]
  • Meena, A. K., Kadirvelu, K. Mishraa, G. K. Rajagopal, C. & Nagar, P. N. (2008). Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 150(3), 619-625. doi:10.1016/j.jhazmat.2007.05.011.[Crossref]
  • Walter, N. L. dos Santos, Dannuza Dias Cavalcante, Erik Galvão Paranhos da Silva, Cesário Francisco das Virgens, Fabio de Souza Dias. (2011). Biosorption of Pb(II) and Cd(II) ions by Agave sisalana (sisal fiber). Microchem. J. 97(2), 269-273. doi:10.1016/j.microc.2010.09.014.[Crossref]
  • Aziz, HA., Adlan, MN. & Ariffin, KS. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource Technol. 99(6). 1578-1583. doi: 10.1016/j.biortech.2007.04.007.[WoS][Crossref]
  • Chia-Yun Chen, Cheng-Yu Yang, Arh-Hwang Chen. (2011). Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin. J. Environ. Manag. 92(3), 796-802. doi:10.1016/j.jenvman.2010.10.029.[Crossref]
  • Ming-qin Jiang, Qing-ping Wang, Xiao-ying Jin, Zu-liang Chen. (2009). Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. J. Hazard. Mater. 170(1), 332-9. doi:10.1016/j.jhazmat.2009.04.092.[Crossref]
  • Standeker, S., Novak, Z. & Knez, Z. (2009). Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. J. Hazard. Mater. 165(1-3), 1114-8. DOI:10.1016/j.jhazmat.2008.10.123.[WoS][Crossref]
  • Standeker, S., Veronovski, A. Novak, Z. & Knez, Z. (2010). Silica aerogels modified with mercapto functional groups used for Cu (II) and Hg (II) removal from aqueous solutions. Desalination. 269, 223-230. DOI:10.1016/j.desal.2010.10.064.[WoS][Crossref]
  • Rajesh Kumar, S., Krishna Pillai, P. & Warrier, K. (1998). Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels. Polyhedron. 17(10), 1699-703. DOI:10.1016/S0277-5387(97)00446-4.[Crossref]
  • Schwarz, W., Ebert, V. Geerds, H. Jungmann, K. KIirches, S. Koppe, S. Maas, F. Mundinger, H. J. Zu Putlitz, G. & Rosenkranz, J. (1992). Thermal muonium in vacuo from silica aerogels. J Non-Cryst. Solids. 145, 244-9. DOI:10.1016/S0022-3093(05)80465-X.[Crossref]
  • Reynolds, J. G., Coronado, P. R. & Hurbesh, L. W. (2001). Hydrophobic aerogels for oil-spill clean up-synthesis and characterization. J. Non-Cryst. Solids. 292(1-3), 127-37. DOI:10.1016/S0022-3093(01)00882-1.[Crossref]
  • Anappara, A. A., Rajeshkumar, S. Mukundan, P. Warrier, P. Ghosh, S. & Warrier, K. (2004). Impedance spectroscopic studies of sol-gel derived subcritically dried silica aerogels. Acta Mater. 52(2), 369-75. DOI:10.1016/j.actamat.2003.09.035.[Crossref]
  • Ngeontae, W., Aeungmaitrepirom, W. & Tuntulani, T. (2007). Chemically modified silica gel with aminothioamido-anthraquinone for solid phase extraction and preconcentration of Pb (II), Cu (II), Ni (II), Co (II) and Cd (II). Talanta. 71(3), 1075-82. DOI: 10.1016/j.talanta.2006.05.094.[Crossref]
  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3-4), 997-1026. DOI: 10.1016/j.procbio.2004.04.008.[Crossref]
  • Banerjee, S. S. & Chen, D. H. (2007). Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147(3), 792-9. DOI:10.1016/j.jhazmat.2007.01.079.[Crossref]
  • Meena, A. K., Mishra, G. Rai, P. Rajagopal, C. & Nagar, P. (2005). Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 122(1-2), 161-70. DOI:10.1016/j.jhazmat.2005.03.024.[Crossref]
  • Marcus, Y. (1991). Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298-15 K. J Chem Soc Faraday Trans. 87(18), 2995-9. DOI: 10.1039/FT9918702995.[Crossref]
  • Inglezakis, V. J., Loizidou, M. D. & Grigoropulou, H. P. (2003). Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interface Sci. 261(1), 49-54. DOI:10.1016/S0021-9797(02)00244-8.[Crossref]
  • Aydin, Y. A. & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem. Eng. J. 151(1-3), 188-94. DOI:10.1016/j.cej.2009.02.010.[Crossref]
  • Rojas, G., Silva, J. Flores, J. A. Rodriguez, A. Ly, M. & Maldonado, H. (2005). Adsorption of chromium onto cross-linked chitosan. Sep. Purif. Technol. 44(1), 31-36. DOI:10.1016/j.seppur.2004.11.013.[Crossref]
  • Uluozlu, O. D., Sari, A. Tuzen, M. & Soylak, M. (2008). Biosorption of Pb (II) and Cr (III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour. Technol. 99(8), 2972-80. DOI:10.1016/j.biortech.2007.06.052.[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-012-0059-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.