Preferences help
enabled [disable] Abstract
Number of results
2012 | 14 | 1 | 41-45
Article title

Removal of SO2 from gases on carbon materials

Title variants
Languages of publication
The aim of the work is to describe a capability of the active carbon CARBON L-2-4 (AC) and of the nanocarbon (NC) materials containing iron nanoparticles to continuously remove SO2 from air. The carbon nanomaterials (NC) containing iron nanoparticles were synthesised using a chemical vapor deposition method - through catalytic decomposition of ethylene on nanocrystalline iron.The process of SO2 removal was carried out on dry and wet with water carbon catalyst (AC or NC) and was studied for inlet SO2 concentration 0.3 vol.% in the presence of O2, N2 and H2O, in the temperature range of 40-80°C.
Physical description
1 - 1 - 2012
3 - 4 - 2012
  • Raymundo-Pinero, E., Cazorla-Amoro's, D., Salinas-Martinez de Lecea, C. & Linares-Solano, A. (2000). Factors controlling the SO2 removal by porous carbons: - relevance of the SO2 oxidation step. Carbon 38, 335-344. DOI:10.1016/S0008-6223(99)00109-8.[Crossref]
  • Lizzio, A. A. & DeBarr, J. A. (1996). Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char. Fuel 75, 1515-1522. DOI:10.1016/0016-2361(96)00127-5.[Crossref]
  • Martin, C., Perrard, A., Joly, J. P., Gaillard, F. & Delecroix, V. (2002). Dynamic adsorption on activated carbons of SO2 traces in air I. Adsorption capacities. Carbon 40, 2235-2246. DOI:10.1016/S0008-6223(02)00108-2.[Crossref]
  • Bandosz, T. J. (2006). Carbonaceous materials as desulfurization media, Combined and Hybrid Adsorbents. NATO Security through Science Series 145-164. DOI: 10.1007/1-4020-5172-7_16.[Crossref]
  • Gaur, V., Asthana, R. & Verman, N. (2006). Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon 44, 46-60. DOI:10.1016/j.carbon.2005.07.012.[Crossref]
  • Daley, M. A., Mangun, C. L., DeBarr, J. A., Riha, S., Lizzio, A. A., Donnals, G. L. & Economy, J. (1997). Adsorption of SO2 onto oxidized and heattreated activated carbon fibers (ACFS). Carbon 35, 411-417. DOI:10.1016/S0008-6223(97)89612-1.[Crossref]
  • Narkiewicz, U. (2005). Technology of the nanocarbon materials preparation. Pol. J. Chem. Tech. 7, 87-94.
  • Narkiewicz, U., Pełech, I., Rosłaniec, Z., Kwiatkowska, M. & Arabczyk, W. (2007). Preparation of nanocrystalline iron-carbon materials as fillers for polymers. Nanotechnology 18, 5601-5605. DOI: 10.1088/0957-4484/18/40/405601.[WoS][Crossref]
  • Pełech, I. & Narkiewicz, U. (2009). The Kinetics of Ethylene Decomposition on Iron Catalyst. Acta Phys. Pol. A 116, 146-149.
  • Narkiewicz, U., Pełech, I., Arabczyk, W., Biedermann, K. & Tueschner, Ch. (2008). Catalytic decomposition of ethylene - the effect of process conditions on the yield and morphology of nanocarbon products. Pol. J. Chem. 82, 1743-1752.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.