Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 4 | 71-76

Article title

Influence of reduction time of copper based catalysts: Cu/Al2O3 and CuCr2O4 on hydrogenolysis of glycerol


Title variants

Languages of publication



High activity of copper based catalysts for C-O bond hydro-dehydrogenation and their poor activity for C-C bond cleavage1 have prompted an attempt to apply such catalysts in the hydrogenolysis of glycerol to 1,2- and 1,3-propanediol. In the present study the influence of hydrogen reduction time of the Cu/Al2O3 and CuCr2O4 copper catalysts on glycerol conversion and selectivity of transformation to propanediols and by-products was studied. At first a general comparison was made between the commercial catalysts and those prepared by the co-precipitation method. As better results were obtained in the presence of catalysts prepared by co-precipitation, they were selected for further detailed studies of the influence of reduction time. For both prepared catalysts Cu/Al2O3 and CuCr2O4 the reduction time of 8 h was optimal. In the presence of Cu/Al2O3 catalyst the conversion of glycerol was 59.0%, selectivity of transformation to 1,2-propanediol 77.4% and selectivity to 1,3-propanediol 1.9%. In the presence of CuCr2O4 the glycerol conversion was 30.3% and selectivity to 1,2-propanediol 67.3%.









Physical description


1 - 1 - 2011
2 - 1 - 2012


  • Institute of Organic Chemical Technology, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Organic Chemical Technology, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Organic Chemical Technology, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • Huang, Z., Cui, F., Kang, H., Chen, J., Zhang, X. & Xia, Ch. (2008), Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method: A simple but efficient and stable catalyst for glycerol hydrogenolysis. Chem. Mater. 20, 5090-5099. DOI: 10.1021/cm8006233.[Crossref][WoS]
  • OECD-FAO Agricultural Outlook 2010-2019 from
  • Dasari, M.A., Kiatsimkul, P-P., Sutterlin, W.R. & Suppes, G.J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A-Gen. 281, 225-231. DOI: 10.1016/j.apcata.11.033.[Crossref]
  • Guo, L., Zhou, J., Mao, J., Guo, X. & Zhang, S. (2009). Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Appl. Catal. A-Gen. 367, 93-98. DOI: 10.1016/j.apcata.2009.07.040.[Crossref]
  • ---
  • Chuah, H.H., Brown, H.S. & Dalton, P.A. (1995). Corterra poly(trimethylene terephtalate). A new performance carpet fiber (1995). Int. Fiber. J. Oct. 1995.
  • Greene, R.N. (1990). Copolyetherester elastomer with poly(1,3-propylene terephtalate) hard segment. U.S. Patent No. 4,937,314.
  • Xiu, Z.-L. & Zeng, A.-P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917-926. DOI: 10.1007/s00253-008-1387-4.[WoS][Crossref]
  • Ma, L. & He, D. (2009). Hydrogenolysis of glycerol to propanediols over highly active Ru-Re bimetallic catalysts. Top. Catal. 52, 834-844. DOI: 10.1007/s11244-009-9231-3.[WoS][Crossref]
  • Zeng, A.-P. & Biebl, H. (2002), Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biot. 74, 240-259.
  • Wang, S. & Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett. 117, 62-67. DOI: 10.1007/s10562-007-9106-9.[Crossref][WoS]
  • Huang, L., Zhu, Y-L., Zheng, H-Y., Li, Y-W. & Zeng, Z-Y. (2008). Continuous production of 1,2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. J. Chem. Technol. Biotechnol. 83, 1670-1675. DOI: 10.1002/jctb.1982.[Crossref][WoS]
  • Tsukuda, E., Sato, S., Takahashi, R. & Sodesawa, T. (2007). Production of acrolein over silica-supported heteropoly acids. Catal. Commun. 8, 1349-1353. DOI: 10.1016/j.catcom.2006.12.006.[WoS][Crossref]
  • Gandarias, I., Arias, P.L., Requies J., Güemez, M.B. & Fierro, J.L.G. (2010). Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B-Environ. 97, 248-256. DOI: 10.1016/j.apcatb.2010.04.008.[Crossref][WoS]
  • Mane, R.B., Hengne, A.M., Ghalwadkar, A.A., Vijayanand, S., Mohite, P.R, Potdar, H.S. & Rode, Ch.V. (2010). Cu: Al nano catalyst for selective hydrogenolysis of glycerol to 1,2-propanediol. Catal Lett. 135, 141-147. DOI: 10.1007/s10562-010-0276-5.[Crossref]
  • Kim, N.D., Oh, S., Joo, J.B., Jung, K.S. & Yi, J. (2010). Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis. Korean J. Chem. Eng. 27, 431-434. DOI: 10.1007/s11814-010-0070-5.[Crossref]
  • Khasin, A.A., Yur'eva, T.M., Plyasova, L.M., Kustova, G.N., Jobic, H., Ivanov, A., Chesalov Yu A., Zaikovskii, V.I., Khasin, A.V., Davydova, L.P. & Parmon, V.N. (2008). Mechanistic features of reduction of copper chromite and state of absorbed hydrogen in the structure of reduced copper chromite. Russian J of Gen. Chem. 78, 2203-2213. DOI: 10.1134/S1070363208110418.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.