Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 4 | 63-70

Article title

The simplex optimization for high porous carbons preparation

Content

Title variants

Languages of publication

EN

Abstracts

EN
The microporous carbon materials were prepared by chemical activation of Polish coal with potassium hydroxide using the simplex design method for planning the experiments. The experimental parameters were varied to identify the optimum conditions. Coal can be an excellent starting material for the preparation of high porous carbons for natural gas storage. The porosity of the resultant carbons was characterized by nitrogen adsorption (-196°C). Methane adsorption was investigated in a volumetric laboratory installation at range pressures from 1 to 3.5 MPa (25°C).The best results of methane storage capacity (557 cm3 · g-1) were obtained when using an impregnation ratio 3.41/1 KOH/precursor and temperature at 592°C, (SLANG = 2091 m2 · g-1). The parameters of the preparation of high porosity and high methane adsorption carbon were determined by a fast and simple method.

Publisher

Year

Volume

13

Issue

4

Pages

63-70

Physical description

Dates

published
1 - 1 - 2011
online
2 - 1 - 2012

Contributors

  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, 70-322 Szczecin, ul. Pułaskiego 10, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, 70-322 Szczecin, ul. Pułaskiego 10, Poland

References

  • Lozano-Castello, D. Alcaniz-Monge, J. De la Casa-Lillo, M.A. Cazorla-Amoros, D. & Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel 81, 1777-1803. DOI: 10.1016/S0016-2361(02)00124-2.[Crossref]
  • Liu, J., Zhou, Y., Sun, Y., Su, W. & Zhou, L. (2011). Methane storage in wet carbon of tailored pore sizes. Carbon 49, 3731-3736. DOI: 10.1016/j.carbon.2011.05.005.[Crossref]
  • Lozano-Castello, D., Cazorla-Amoros, D. & Linares-Solano, A. (2002). Powdered activated carbons and activated carbon fibers for methane storage: A camparative study. Energy Fuels 16, 1321-1328. DOI: 10.1021/ef020084s.[Crossref]
  • Garcia Blanco, A.A., Alexandre de Oliveira, J.C., Lopez, R., Moreno-Pirajan, J.C., Giraldo, L., Zgrablich, G. & Sapag, K. (2010). A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf., A 357, 74-83. DOI: 10.1016/j.colsurfa.2010.01.006.[WoS][Crossref]
  • Zhou, Y., Wang, Y., Chen, H. & Zhou, L. (2005). Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon 43, 2007-2012. DOI: 10.1016/j.carbon.2005.03.017.[Crossref]
  • Rodriguez-Reinoso, F., Nakagawa, Y., Silvestre-Albero, J., Juarez-Galan, J.M. & Molina-Sabio, M. (2008). Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous Mesoporous Mater. 115, 603-608. DOI: 10.1016/j.micromeso.2008.03.002.[Crossref][WoS]
  • Almansa, C., Molina-Sabio, M. & Rodriguez-Reinoso, F. (2004). Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous Mesoporous Mater. 76, 185-191. DOI: 10.1016/j.micromeso.2004.08.010.
  • Bagheri, N. & Abdei, J. (2011). Adsorption of methane on corn cobs based activated carbon. Chem Eng Res Des. Article in Press. DOI: 10.1016/j.cherd.2011.02.002.[Crossref]
  • Abdel-Nasser, A. & El-Hendawy. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41, 713-722. DOI: 10.1016/S0008-6223(03)00029-0.[Crossref]
  • Zhang, T., Walawender, P.W. & Fan, L.T. (2010). Grain-based activated carbons for natural gas storage. Bioresour. Technol. 101, 1983-1991. DOI: 10.1016/j.biortech.2009.10.046.[WoS][Crossref][PubMed]
  • Feaver, A. & Cao, G. (2006). Activated carbon cryogels for low pressure methane storage. Carbon 44, 590-593. DOI: 10.1016/j.carbon.2005.10.004.[Crossref]
  • Lozano-Castello, D., Lillo-Rodenas, M.A. Cazorla-Amoros, D. & Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon 39, 741-749. DOI:PII: S0008-6223(00)00185-8.[Crossref]
  • Menon, V.C. & Komarneni, S. (1998). Porous adsorbents for vehicular natural gas storage. J. Porous Mater. 5, 43-58.[Crossref]
  • Hsu, L. & Teng, H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process. Technol. 64, 155-166. DOI: PII: S0378-3820_00.00071-0.
  • Zhang, H., Chen, J. & Guo, S. (2008). Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel 87, 304-311. DOI:10.1016/j.fuel.2007.05.002.[WoS][Crossref]
  • Dai, X.D., Liu, X.M., Qiao, L. & Yan, Z.F. (2008). Pilot Preparation of Activated Carbon for Natural Gas Storage. Energy Fuels 22, 3420-3423.DOI:10.1021/ef800313f.[Crossref]
  • Guan, C., Loo, L.S., Wang, K. & Yang, C. (2011). Methane storage in carbon pellets prepared via a binderless method. Energy Convers. Manage. 52, 1258-1262. DOI: 10.1016/j.enconman.2010.09.022.[Crossref][WoS]
  • Guan, C., Su, F., Zhao, X.S. & Wang, K. (2008). Methane storage in a template-synthesized carbon. Sep. Purif. Technol. 64, 124-126. DOI:10.1016/j.seppur.2008.08.007.[Crossref][WoS]
  • Celzard, A. & Fierro, V. (2005). Preparing a suitable material designed for methane storage. Energy Fuels. 19, 573-583. DOI: 10.1021/ef040045b.[Crossref]
  • Perrin, A., Celzard, A., Mareche, J.F. & Furdin, G. (2003). Methane storage within dry and wet active carbons: A comparative study. Energy Fuels 17, 1283-1291. DOI: 10.1021/ef030067i.[Crossref]
  • Yeon, S-H., Osswald, S., Gogotsi, Y., Singer, J.P., Simmons, J.M., Fischer, J.E., Lillo-Rodenas M.A. & Linares-Solano A. (2009). Enhanced methane storage of chemically and physically activated carbide-derived carbon. J. Power Sources 191, 560-567. DOI:10.1016/j.jpowsour.2009.02.019.[Crossref][WoS]
  • Perrin, A., Celzad, A., Albiniak, A., Jasienko-Halat, M., Mareche, J.F. & Furdin, G. (2005). NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous Mesoporous Mater. 81, 31-40. DOI:10.1016/j.micromeso.2005.01.015.[Crossref]
  • Lillo-Rodenas, M.A., Lozano-Castello, D., Cazorla-Amoros, D. & Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite II. Activation by NaOH. Carbon 39, 751-759. PII: S0008-6223(00)00186-X.[Crossref]
  • Tay, T., Ucar, S. & Karagoz, S. (2009). Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater., 165, 481-485. DOI: 10.1016/j.jhazmat.2008.10.011.[Crossref]
  • Lozano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A. & Quinn, D.F. (2002). Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon 40, 989-1002. PII: S0008-6223(01)00235-4.[Crossref]
  • Qiu, J., Li, Y., Wang, Y., Liang, C., Wang, T. & Wang, D. (2003). A novel form of carbon micro-balls from coal. Carbon 41, 767-772. DOI:10.1016/S0008-6223(02)00392-5.[Crossref]
  • Tuinstra, F. & Koening, J.L. (1970). Raman spectrum of graphite. J. Chem. Phys. 53 1126-1130.[Crossref]
  • Spendley, W., Hext, G.R. & Himsworth, F.R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation. Technometerics 4, 441-461.[Crossref]
  • Gorskij, W.G. & Brodskij, W.Z. (1965). Simplex design method for planning the optimum experiments. Zawod. Lab. 31, 831-836.
  • Veres, M., Fule, M., Toth, S., Koos, M. & Pocsik, I. (2004). Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diamond Relat. Mater. 13, 1412-1415. DOI: 10.1016/j.diamond.2004.01.041.[Crossref]
  • Shimodaira, N. & Masui, A. (2002). Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92, 902-909.
  • Kumar, R., Tiwari, R.S. & Srivastava, O.N. (2011). Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res. Lett. 92, 1-6. DOI:10.1186/1556-276X-6-92.[Crossref][WoS]
  • Zhang, Y., Tang, Y., Lin, L. & Zhang, E. (2008). Microstructure transformation of carbon nanofibers during graphitization. Trans. Nonferrous Met. Soc. China 18, 1094-1099.[WoS]
  • Kierzek, K. 2006. Activated carbon materials with potassium hydroxide. PhD Thesis. Wroclaw University of Technology.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-011-0051-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.