PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 4 | 47-52
Article title

Mathematical modeling of air duct heater using the finite difference method

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this research, mathematical modeling of a duct heater has been performed using energy conservation law, Stefan-Boltzman law in thermal radiation, Fourier's law in conduction heat transfer, and Newton's law of cooling in convection heat transfer. The duct was divided to some elements with equal length. Each element has been studied separately and air physical properties in each element have been used based on its temperature. The derived equations have been solved using the finite difference method and consequently air temperature, internal and external temperatures of the wall, internal and external convection heat transfer coefficients, and the quantity of heat transferred have been calculated in each element and effects of the variation of heat transfer parameters have been surveyed. The results of modelling presented in this paper can be used for the design and optimization of heat exchangers.
Publisher
Year
Volume
13
Issue
4
Pages
47-52
Physical description
Dates
published
1 - 1 - 2011
online
2 - 1 - 2012
References
  • Stein, R.P. (1966). Liquid metal heat transfer, Adv. Heat Tran., 3. 101-174. DOI: 10.1016/S0065-2717(08)70051-0.[Crossref]
  • Stein, R.P. (1966). Computational procedures for recent analysis of counter flow heat exchangers, AICHE J. 12, 1216-1219. DOI: 10.1002/aic.690140331.[Crossref]
  • Nuge, R.J. & Gill. (1965). Analysis of heat and mass transfer in some counter current flows, Int. J. Heat Mass Tran. 8, 873-886. DOI:10.1016/0017-9310(65)90072-4.[Crossref]
  • Nuge, R.J. & Gill. (1966). An analytical study of laminar counter flow double pipe heat exchanger, AICHE J. 12, 279-286. DOI: 10.1002/aic.690120214.[Crossref]
  • Bentwich, M. (1973). Multi stream counters current heat exchangers, ASME J. Heat Tran. 95, 458-463. DOI:10.1115/1.3450089.[Crossref]
  • Seban, R.A. (1972). Laminar counter flow exchangers: an approximate account of wall resistance and variable heat transfer coefficient, ASME J. Heat Tran. 94, 391-396. DOI:10.1115/1.3449957.[Crossref]
  • Bejan, A. (1977). The concept of irreversibility in heat exchanger design: counter flow heat exchangers for gas to gas applications, ASME J. Heat Tran. 99, 374-380. DOI: 10.1115/1.3450705.[Crossref]
  • Jung, D. & Assanis, D.N. (2006). Numerical modeling of cross flow compact heat exchanger with louvered fins using thermal resistance concept, SAE International.
  • Holman, J.P. (2002). Heat Transfer, Ninth edition, McGraw-Hill.
  • Kern, D.K. (1965). Process Heat Transfer, McGraw - Hill.
  • Incorpera, F.P., Dewitt, D.P., Bergman, T.L. & Lavine, A.S. (2007). Introduction to Heat Transfer, Fifth edition, John Wiley & Sons.
  • Van der Kraan, M., Peeters, M.M.W., Fernandez Cid, M.V., Woerlee, G.F., Veugelers, W.J.T. & Witkamp, G.J. (2005). The influence of variable physical properties and buoyancy on heat exchanger design for near- and supercritical conditions, J. Supercritical Fluids. 34, 99-105. DOI:10.1016/j.supflu.2004.10.007.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0048-z
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.