Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 4 | 8-14

Article title

New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes

Content

Title variants

Languages of publication

EN

Abstracts

EN
Humic acid Leonardite IHSS standard was decomposed on TiO2 and TiO2 modified by FeC2O4 via the photocatalysis and photo-Fenton processes under UV irradiation. Humic acid (HA) were favorable adsorbed on TiO2 surface and followed decomposition during UV irradiation faster on TiO2 than on the modified samples. However, when H2O2 was added to the solution, the photo-Fenton process occurred on the prepared TiO2 samples, contained iron together with photocatalysis and high acceleration of HA decomposition was observed. In this case the mineralization degree was much higher than in the applied photocatalysis only, around 75% HA (with concentration of 18 mg/L) was mineralized after 3 h of adsorption and 5 h of UV irradiation in the presence of H2O2 and modified TiO2 whereas on TiO2 mineralisation of HA occurred in around 45% only. The measured fluorescence spectra of HA solutions showed that in the presence of H2O2 polycyclic aromatics were rapidly oxidized to the lower size products such as alcohols, aldehydes, ketones and carboxylic acids, what accelerated the process of HA decomposition.

Publisher

Year

Volume

13

Issue

4

Pages

8-14

Physical description

Dates

published
1 - 1 - 2011
online
2 - 1 - 2012

Contributors

author
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
author
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland

References

  • Liu, S., Lim, M., Fabris, R., Chow, C., Chiang, K., Drikas, M. & Amal, R. (2008). Removal of humic acid using TiO2 photocatalytic process - Fractionation and molecular weight characterisation studies. Chemosphere. 72, 263-271. DOI: 10.1016/j.chemosphere.2008.01.061.[WoS][Crossref]
  • Murray, C.A. & Parsons, S. (2004). Removal of NOM from drinking water: Fenton's and photo-Fenton's processes. Chemosphere. 54, 1017-1023. DOI: 10.1016/j.chemosphere.2003.08.040.[Crossref]
  • Fukushima, M. & Tatsumi K. (2001). Degradation characteristics of humic acid during photo-Fenton processes. Environ. Sci. Technol. 35, 3683-3690.
  • Katsumata, H., Sada, M., Kaneco, S., Suzuki, T., Ohta, K. & Yobiko, Y. (2008). Humic acid degradation in aqueous solution by the photo-Fenton process. Chem. Eng. Journal. 137, 225-230. DOI: 10.1016/j.cej.2007.04.019.[Crossref]
  • Al-Rasheed. R. & Cardin, D.J. (2003). Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air flow. Chemosphere. 51, 925-933. DOI: 10.1016/S0045-6535(03)00097-3.[Crossref]
  • Al-Rasheed, R. & Cardin, D.J. (2003). Photocatalytic degradation of saline waters. Part 2. Effects of various photocatalytic materials. Appl. Catal. A: Gen. 246, 39-48. DOI: 10.1016/S0926-860X(02)00667-1.[Crossref]
  • Selcuk, H., Sene, J.J, Sarikaya, H.Z., Bekbolet, M. & Anderson, M.A. (2004). An innovative photocatalytic technology in the treatment of river water containing humic substances. Water Sci. & Techn. 49, 153-158.[PubMed]
  • Wiszniowski, J., Didier, R., Surmacz-Gorska, J. & Miksch, K. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. J. Photochem. Photobiol. A: Chem. 152, 267-273.
  • Cho, Y. & Choi, W. (2002). Visible-light induced reactions of humic acids on TiO2. J. Photocham. Photobiol. A: Chem. 148, 129-135.
  • Bansal, A., Madhavi, S., Yang Tan, T.T. & Lim, T.M. (2008). Effect of silver on the photocatalytic degradation of humic acid. Catal. Today. 131, 250-254. DOI: 10.1016/j.cattod.2007.10.078.[Crossref]
  • Moriguchi, T., Tahara, M. & Yaguchi, K. (2006). Adsorbability and photocatalytic degradability of humic substances in water on Ti-modified silica. J. Coll. Interf. Sci. 297, 678-686. DOI: 10.1016/j.jcis.2005.11.002.[Crossref]
  • Qiao, S., Sun, D.bD., Tay, J.bH. & Easton, C. (2003). Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Wat. Sci. & Techn. 47, 211-217.
  • Zhang, X., Pan, J.H., Fu, W., Du, A.J. & Sun, D.D. (2009). TiO2 nanotube photocatalytic oxidation for water treatment. Water Science & Technology. 9, 45-49. DOI: 10.2166/ws.2009.075.[Crossref]
  • Wang, G.-S., Hsieh, S.-T. & Hong, C.-S. (2000). Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Res. 34, 3882-3887. DOI:
  • Bekbolet, M. & Balcioglu, I. (1996). Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion. Wat. Sci. Techn. 34, 73-80.
  • Tryba, B. Morawski, A.W., Inagaki, M. & Toyoda, M. (2006). The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Appl. Catal. B: Environ. 63, 215-221. DOI: 10.1016/j.apcatb.2005.09.011.[Crossref]
  • Tryba, B. (2007). Effect of TiO2 precursor on the photoactivity of Fe-C-TiO2 photocatalysts for Acid Red (AR) decomposition. J. Adv. Oxid. Techn. 10, 267-272.
  • Uyguner, C.S., Bekbolet, M. (2005). Evaluation of humic acid photocatalytic degradation by UV-Vis and fluorescence spectroscopy. Catal. Today, 101, 267-274. DOI: 10.1016/j.cattod.2005.03.011.[Crossref]
  • Fasurova, N., Cechlovska, H. & Kucerik, J. (2006). A comparative study of South Moravian lignite and standard IHSS humic acids, optical and colloidal properties. Petroleum & Coal. 48, 24-32.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-011-0042-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.