Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Experimental tests covering the production of struvite MgNH4PO4·6H2O from water solutions containing 1.0 mass % of phosphate(V) ions using magnesium and ammonium ions in stoichiometric proportions were carried out in a crystallizer of 1.2 dm3 working volume. The process temperature was 298 K. Struvite crystals of mean size Lm from ca. 14 to ca. 38 μm were produced depending on the process environment's pH (9-11) and the mean residence time of suspension in a crystallizer, τ (900-3600 s). In such defined process conditions the linear growth rate of struvite crystals changed from 1.45·10-8 m/s (pH 9, τ 900 s) to 2.06·10-9 m/s (pH 11, τ 3600 s) while the nucleation rate from 5.1·107 to 3.2·109 1/(sm3). Crystal product of the most advantageous granular characteristics was produced at pH 9 and the mean residence time 3600 s. Within this product population the largest sizes reached above 200 μm while the number of crystals smaller than 3 mm was kept below 6%.
Year
Volume
Issue
Pages
46-53
Physical description
Dates
published
1 - 1 - 2011
online
16 - 6 - 2011
Contributors
author
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
- Department of Chemical & Process Engineering, Silesian University of Technology, ks. M. Strzody 7, 44-101 Gliwice, Poland
author
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
References
- Mullin, J.W. (1993). Crystallization. Oxford: Butterworth-Heinemann.
- Rojkowski, Z. & Synowiec, J. (1991). Crystallization and the Crystallizers. Warszawa: WNT (in Polish).
- Synowiec, P. (2008). Industrial Crystallization from Solution. Warszawa: WNT (in Polish).
- Matynia, A. (1997). Crystallizers with a jet pump. Inż. Ap. Chem. 36(6), 9-14 (in Polish).
- Koralewska, J., Piotrowski, K., Wierzbowska, B. & Matynia, A. (2007). Nucleation and crystal growth rates of struvite in DTM type crystallizer with jet pump of descending suspension flow in a mixing chamber. Am. J. Agril. Biol. Sci. 2, 260-266.
- Koralewska, J., Piotrowski, K., Wierzbowska, B. & Matynia, A. (2007). Reaction-crystallization of struvite in a continuous liquid jet pump DTM MSMPR crystallizer with upward circulation of suspension in a mixing chamber - an SDG kinetic approach. Chem. Eng. Technol. 30, 1576-1583. DOI: 10.1002/ceat.200700229.[Crossref][WoS]
- Koralewska, J., Piotrowski, K., Wierzbowska, B. & Matynia, A. (2009). Kinetics of reaction-crystallization of struvite in the continuous Draft Tube Magma type crystallizers - influence of different internal hydrodynamics. Chinese J. Chem. Eng. 17, 330-339. DOI: 10.1016/S1004-9541(08)60212-8.[WoS][Crossref]
- Matynia, A., Piotrowski, K., Ciesielski, T. & Liszka, R. (2009). New constructions of crystallizer with a compressed air driven jet-pump in the phosphorus recycling technology. Przem. Chem. 88, 505-508 (in Polish).
- Randolph, A.D. & Larson, M.A. (1988). Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization. New York, USA: Academic Press.
- Doyle, J. & Parsons, S.A. (2002). Struvite formation, control and recovery. Wat. Res. 36, 3925-3940. DOI: 10.1016/S0043-1354(02)00126-4.[Crossref]
- Parsons, S.A. (2001). Recent scientific and technical developments: struvite precipitation. CEEP Scope Newslett. 41, 15-22.
- Matynia, A., Koralewska, J., Piotrowski, K. & Wierzbowska, B. (2006). The influence of the process parameters on the struvite continuous crystallization kinetics., Chem. Eng. Comm. 193, 2, 160-176. DOI: 10.1080/009864490949008.[Crossref]
- Le Corre, K.S., Valsami-Jones, E., Hobbs, P. & Parsons, S.A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 39, 433-477. DOI: 10.1080/10643380701640573.[Crossref]
- Grzmil, B. & Wronkowski, J. (2004). Process for removing and recovering phosphates from wastewaters. Przem. Chem. 83, 275-280 (in Polish).
- Gorazda, K., Wzorek, Z., Jodko, M. & Nowak, A.K. (2004). Struvite - manufacturing methods. Chemik 57, 317-320 (in Polish).
- de-Bashan, L.E. & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Wat. Res. 38, 4222-4246. DOI: 10.1016/j.watres.2004.07.014.[Crossref]
- Matynia, A., Piotrowski, K., Liszka, R. & Ciesielski, T. (2009). Reaction crystallization of struvite in a continuous DTM type crystallizer with jet-pump driven by compressed air. In Proceedings of 36th International Conference of Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, CD-ROM No. 067, 067.1-067.10.
- Matynia, A., Liszka, R., Ciesielski, T. & Piotrowski, K. (2009). Reaction crystallization of struvite from diluted water solutions in a continuous DTM-type crystallizer with jet pump driven by compressed air. Inż. Ap. Chem. 48(4), 83-84.[WoS]
- Matynia, A., Mazieńczuk, A., Wierzbowska, B., Kozik, A. & Piotrowski, K. (2010). New crystallizers with a compressed air-driven jet pump in the process of precipitating struvite from diluted water solutions containing phosphate ions. Chemik 64, 753-758.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0023-8