PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 2 | 29-34
Article title

Degradability of organic-inorganic cellulose acetate butyrate hybrids in sea water

Content
Title variants
Languages of publication
EN
Abstracts
EN
Environmental degradability of novel organic-inorganic cellulose acetate butyrate hybrids obtained via solgel process was investigated. The degradation of hybrids was studied under marine exposure conditions in the Baltic Sea for a period of 25 weeks. The influence of characteristic parameters of sea water on the degree of degradation monitored by changes of weight and optical microscopy was discussed. The degraded samples were also examined by FT-IR spectroscopy. It has been established that the CAB/silica hybrids are more susceptible to biodegradation in sea water environment than pure cellulose acetate butyrate.
Publisher

Year
Volume
13
Issue
2
Pages
29-34
Physical description
Dates
published
1 - 1 - 2011
online
16 - 6 - 2011
Contributors
  • Department of Industrial Commodity Science, Poznań University of Economics, al. Niepodległości 10, 61-875 Poznań, Poland
  • Department of Chemistry and Industrial Commodity Science, Gdynia Maritime University, ul. Morska 83, 81-225 Gdynia, Poland
  • Department of Product Ecology, Poznań University of Economics, al. Niepodległości 10, 61-875 Poznań, Poland
  • Department of Chemistry and Industrial Commodity Science, Gdynia Maritime University, ul. Morska 83, 81-225 Gdynia, Poland
References
  • Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393. DOI: 10.1002/anie.200460587.[Crossref]
  • Edgar, K.J., Buchanan Ch.M., Debenham J.S., Rundquist P.A., Seiler B.D., Shelton M.C. & Tindall D. (2001). Advances in cellulose ester performance and application, Prog. Polym. Sci. 26, 1605-1688. DOI: 10.1016/S0079-6700(01)00027-2.[Crossref]
  • Lee, S.H., Yoshioka, M. & Shiraishi, N. (2000). Polymer Blend of Cellulose Acetate Butyrate and Aliphatic Polyestercarbonate. J. Appl. Polym. Sci. Vol. 77, 2908-2914. DOI: 10.1002/1097-4628(20000923).[Crossref]
  • Grunert, M. & Winter, W.T. (2002). Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10(1/2), 27-30. DOI: 10.1023/A:1021065905986.[Crossref]
  • Kosaka, P.M., Kawano, Y., Petri, H.M, Fantini, M.C.A. & Petri, D.F.S. (2007). Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. J. Appl. Polym. Sci. Vol. 103, 402-411. DOI: 10.1002/app.24836.[Crossref]
  • Wang, T., Cheng, G., Ma, S., Cai, Z. & Zhang, L. (2003). Crystallization Behavior, Mechanical Properties, and Environmental Biodegradability of Poly(-hydroxybutyrate)/Cellulose Acetate Butyrate Blends. J. Appl. Polym. Sci. Vol. 89, 2003, 2116-2122. DOI: 10.1002/app.12359.[Crossref]
  • Hofacker, S., Mechtel, M., Mager, M. & Kraus, H. (2002). Sol-gel: a new tool for coatings chemistry. Prog. Org. Coat. 45, 159-164. DOI: 10.1016/S0300-9440(02)00045-0.[Crossref]
  • Sforca, M.L., Yoshida, I.V.P. & Nunes, S.P. (1999). Organic-inorganic membranes prepared from polyether diamine and epoxy silane. J. Memebrane Sci. 159, 197-207. DOI: 10.1016/S0376-7388(99)00059-9.[Crossref]
  • Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28, 83-114. DOI: 10.1016/S0079-6700(02)00019-9.[Crossref]
  • Schubert, U. (1994). Catalysts made of organic-inorganic hybrid materials. New J. Chem. 18, 1049-1058.
  • Kickelbick, G. (2007). Hybrid Materials. Synthesis, Characterization, and Applications, Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA.
  • Chiang, C.L., Ma, C.C.M., Wu, D.L. & Kuan, H.C. (2003). Preparation, Characterization, and Properties of Novolac-Type Phenolic/SiO2 Hybrid Organic-Inorganic Nanocomposite Materials by Sol-Gel Method J. Polym. Sci. Part A Polym. Chem. 41, 905-913. DOI: 10.1002/pola.10624.[Crossref]
  • Tamaki, R. & Chujo, Y. (1998). Synthesis of Poly(vinyl alcohol)/Silica Gel Polymer Hybrids by In-Situ Hydrolysis Method. Appl. Organometal. Chem. 12, 755-762. DOI: 10.1002/(SICI)1099-0739(199810/11)12:10/11<755:AID-AOC783>3.0.CO;2-A.[Crossref]
  • Babooram, K., Francis, B., Bissessur, R. & Narain, R. (2008). Synthesis and characterization of novel (amide-imide)-silica composites by the sol-gel process. Comp. Sci. Tech. 68, 617-624. DOI: 10.1016/j.compscitech.2007.10.012.[Crossref]
  • Yano, S., Iwata, K. & Kurita, K. (1998). Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater. Sci. Engng. C 6, 75-90. DOI: 10.1016/S0928-4931(98)00043-5.[Crossref]
  • Brinker, C.J. & Scherer, G.W. (1990). Sol-Gel Science, San Diego, Academic Press Inc.
  • Jakubiak, P. & Foltynowicz, Z. (2006). Patent Pending No. P-380939 (2006). Polish Patent Office.
  • Wojciechowska, P. & Foltynowicz, Z. (2009). Synthesis of organic-inorganic hybrids based on cellulose acetate butyrate. Polimery. 11-12, 845-848.
  • Lenz, R.W. (1993). Biodegradable polymers. In N.A. Peppas & R.S. Langer (Eds.), Advances in polymer science: biopolymers I. (pp. 4-39). Berlin, Germany: Springer-Verlag.
  • Rutkowska, M., Krasowska, K., Heimowska, A. & Kowalczuk, M. (2001). In E. Chiellini et al. (Eds.), Biorelated polymers: sustainable polymer science and technology, New York: Kluwer Academic, Plenum Publishers.
  • Rutkowska, M. & Heimowska, A. (2008). Degradability of natural polymers in sea water. Polimery. 11-12, 854-864 (in Polish).
  • Rutkowska, M., Heimowska, A., Krasowska, K. & Janik, H. (2002). Biodegradability of Polyethylene Starch Blends in Sea Water. Pol. J. Environ. Stud. 11(3), 267-274.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0020-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.