PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 2 | 1-5
Article title

Economically viable synthesis of Fe3O4 nanoparticles and their characterization

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nano iron oxide particles (Fe3O4) were synthesized by coprecipitation of Fe2+ and Fe3+ by ammonia solution in the aqueous phase. Various instrumentation methods such as X ray Diffractometry (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Vibrating Sample Magnetometery (VSM) were used to characterize the properties of nanoparticles. The size of the nanoparticles was measured and was found to be between 10 to 15 nm. The value of saturation magnetization of the nanoparticles was found to be 55.26 emu/g. The BET surface area of nano iron oxide particles measured to be 86.55 m2/g.
Publisher

Year
Volume
13
Issue
2
Pages
1-5
Physical description
Dates
published
1 - 1 - 2011
online
16 - 6 - 2011
Contributors
author
  • Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
author
  • Department of Civil Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
author
  • Department of Civil and Ecological Engineering, Da-Hsu Hsiang, Kaohsiung County 84008, Taiwan
author
  • Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
References
  • Liu, Z.L., Wang, H.B., Lu, Q.H., Du, G.H., Peng, L., Du, Y.Q., Zhang, S.M. & Yao, K.L. (2004). Synthesis and characterization of ultra fine well dispersed magnetic nano particles. J. Magnetism Magnetic Mater. 283, 258-262. DOI:10.1016/j.jmmm.2004.05.031.[Crossref]
  • Salazar, J.S., Roman, M.A.C. & Gomez, L.B. (2007). Structural and magnetic domains characterization of magnetic nanoparticles. Mater. Sci. Eng. C. 27, 317-1320. DOI:10.1016/j.msec.2006.07.027.[Crossref]
  • Thapa, D., Palkar, V.R., Kurup, M.B. & Malik, S.K. (2004). Properties of magnetic nano particles synthesized through a novel chemical route. Mater. Lett. 58, 2692-2694. DOI:10.1016/j.matlet.2004.03.045.[Crossref]
  • Sharma, Y.C., Srivastava, V., Singh, V.K., Kaul, S.N. & Weng, C.H. (2009). Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 30, 583-609. DOI:10.1080/09593330902838080.[Crossref][WoS]
  • Ozkaya, T., Toprak, M.S., Baykal, A., Kavas. H., Koseoglu, Y. & Aktas, B. (2009). Synthesis of Fe2O3 nanoparticles at 100 °C and its magnetic characterization. J. Alloy. Comp., 472, 18-23. DOI:10.1016/j.jallcom.2008.04.101.[Crossref]
  • Sharma, Y.C., Srivastava, V., Upadhyay, S.N. & Weng, C.H. (2008). Aluminum nanoparticles for the removal of Ni(II) from aqueous solutions. Ind. Eng. Chem. Res., 47, 8095-8100. DOI: 10.1021/ie800831v.[Crossref][WoS]
  • Swihart, M.T. (2003). Vapor phase synthesis of nanoparticles. Curr. Opin. Colloid Interf. Sci. 8, 127-133. DOI:10.1016/S1359-0294•03.00007-4.[Crossref]
  • Feng, N.S., Yang, L., Hua, X. & Hua, L.Z. (2005). Removal of hexavalent chromium from aqueous solutions by iron nanoparticles. J. Zhejing Univ. Sci. 6B, 1022-1027. DOI: 10.1007/BF02888495.[Crossref]
  • Murray, C.B., Kagan, C.R. & Bawendi, M.G. (2000). Synthesis and characterization of monodisperse nano crystals and close packed assemblies. Annu. Rev. Mater. Sci. 30, 545-610. DOI: 10.1146/annurev.matsci.30.1.545.[Crossref]
  • Hann, H. (1997). Gas phase synthesis of nanocrystalline materials. Nanostruct. Mater. 9, 3-12. PII 80965-9773(97)ooo13-5.
  • Biasi, R.S.D., Figueiredo, A.B.S., Fernandes, A.A.S. & Larica, C. (2007). Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Commun. 144, 15-17. DOI:10.1016/j.ssc.2007.07.031.[WoS][Crossref]
  • Nomanbhay, M. & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic J Biotechnol. 8, 43-53.
  • Sun, Y., Zhang, J.P., Yang, G. & Li, Z.H. (2007). Preparation of activated carbon with large specific surface area from reed black liquor. Environ. Technol. 28, 491-497. DOI: 10.1080/09593332808618810.[PubMed][WoS][Crossref]
  • Kanel, S.R., Charlet, B. & Choi, L. (2005). Removal of As(III) from ground water by nanoscale zerovalent iron. Environ. Sci. Technol. 39, 1291-1298. DOI: 10.1021/es048991u.[Crossref]
  • Verges, M.A., Costo, R., Roca, A.G., Marco, J.F., Goya, G.F., Serna, C.J. & Morales, M.P. (2008). Uniform and water stable magnetic nanoparticles with diameters around the monodomain-multidomain limit. J. Phys. D: Appl. Phys. 41, 134003-134013. DOI: 10.1088/0022-3727/41/13/134003.[WoS][Crossref]
  • Qi, B., Li, D., Ni & Zheng, H. (2007). A facile reduction route to the preparation of single-crystalline iron nanocubes, Chem. Lett. 36, 722-723. DOI:10.1246/cl.2007.722.[WoS][Crossref]
  • Iida, H., Takayanagi, K., Nakanishi, T. & Osaka, T. (2007). Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interf. Sci. 314, 274-280. DOI:10.1016/j.jcis.2007.05.047.[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0015-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.