Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 13 | 1 | 58-62

Article title

Possibilities of utilizing the solid by-products of biodiesel production - a review

Content

Title variants

Languages of publication

EN

Abstracts

EN
As a consequence of the intended rise in the volume of the biodiesel produced by the member states of the European Union, predominantly from rapeseeds and sunflower seeds, the quantity of the by-products being generated, e.g. glycerol, rapeseed/sunflower seed straw and rapeseed/sunflower seed meal, will increase dramatically. It is therefore recommendable to find effective methods for their processing or utilization in order to reduce the costs of biodiesel production without polluting the environment by excessive wastes. As the utilization of glycerol has often been addressed in the literature1, the aim of our study is to describe the potentiality for utilizing the solid by-products of biodiesel production, namely rapeseed/sunflower straw and rapeseed/ sunflower seed meal.

Publisher

Year

Volume

13

Issue

1

Pages

58-62

Physical description

Dates

published
1 - 1 - 2011
online
17 - 3 - 2011

Contributors

  • Department of Agricultural and Food Bioutilization, Wroclaw University of Economics, ul. Komandorska 118/120, 53-345 Wrocław, Poland
author
  • Department of Agricultural and Food Bioutilization, Wroclaw University of Economics, ul. Komandorska 118/120, 53-345 Wrocław, Poland

References

  • Rymowicz, W. (2006). Utilization of raw materials from biofuels production. In the expertise "Applicability of agricultural wastes in production of useful chemical substances in green chemistry and white technology processes - assessment of potential scientific research and implementation, 5-17 (in Polish).
  • Jessup, R. W. (2009). Development and status of dedicated energy crops in the United States. In vitro Cellular & Developmental Biology - Plant 45(3), 282-290, DOI:10.1007/s11627-009-9221-y.[WoS][Crossref]
  • Randelli, F. (2009). An integrated analysis of production costs and net energy balance biofuels. Regional Environmental Change 9(3), 221-229, DOI:10.1007/s10113-008-0055-7.[Crossref][WoS]
  • Angelidaki, I., Kongjan, P. & Thomsen, A. (2007). Biorefinery for sustainable biofuel production from energy crops: conversion of lignocellulose to bioethanol, biohydrogen and biomethane. AD 11 Conference in Australia, 22 September.
  • Canakci, M. & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind. Microbiol Biotechnol 35(5), 431-441, DOI:10.1007/s10295-008-0337-6.[PubMed][WoS][Crossref]
  • Moser, B. (2009). Biodiesel production, properties, and feedstocks. In vitro Cellular & Developmental Biology - Plant 45(3), 229-266, DOI:10.1007/s11627-009-9204-z.[Crossref][WoS]
  • Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energy Policy 35(9), 4661-4670, DOI:10.1016/j.enpol.2007.04.003.[WoS][Crossref]
  • Markowska, J. (2007). Biomass and biofuels market in Poland. Przemysł Spożywczy 7, 19-21 (in Polish).
  • Abdelhamid, M. T., Horiuchi, T. & Oba, S. (2004). Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresource Technol. 93(2), 183-189, DOI:10.1016/j.biortech.2003.10.012.[Crossref]
  • Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science 31(2), 171-192, DOI:10.1016/j.pecs.2005.02.002.[Crossref]
  • Nielsen, C. (1995). Utilisation of straw and similar agricultural residues. Biomass and Bioenergy, 9(1-5), 315-323, DOI:10.1016/0961-9534(95)00099-2.[Crossref]
  • Paukszta, D. (2006). Chemical composition of the lignified part of the rape straw stem. Zeszyty Instytutu Hodowli i Aklimatyzacji Roślin w Radzikowie, Zeszyt 1, 143-150 (in Polish).
  • Van de Velde, K. & Kiekens, P. (2001). Thermoplastic pultrusion of natural fibre reinforced composites. Composite Structures 54(2-3), 355-360, DOI:10.1016/S0263-8223(01)00110-6.[Crossref]
  • Kijeńska, M. (2008). Prospects for the use of economic plants wastes as thermoplastic polymer fillers. Chemik 4, 167-172 (in Polish).
  • Lu, X., Zhang, Y. & Angelidaki, I. (2009). Opimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource Technol. 100, 3048-3053, DOI:10.1016/j.biortech.2009.01.008.[WoS][Crossref]
  • McKendry, P. (2001). Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 83(1), 37-46, DOI:10.1016/S0960-8524(01)00118-3.[Crossref]
  • Paul, D. (1986). Morphological changes of rape seed straw after sulfate pulping. Cell. Chem. Technol. 20, 429-439.
  • Papatheofanous, M. G., Koullas, D. P., Koukios, E. G., Fuglsang, H., Schade, J. R. & Lofqvist, B. (1995). Biorefining of agricultural crops and residues: effect of pilot-plant fractionation on properties of fibrous fractions. Biomass and Bioenergy 8(6), 419-426, DOI:10.1016/0961-9534(95)00040-2.[Crossref]
  • Diaz, M., Cara, C., Ruiz, E. & Romero, I. (2010). Hydrothermal pre-treatment of rapessed straw. Bioresource Technol. 101(7), 2428-2435, DOI:10.1016/j.biortech.2009.10.085.[WoS][Crossref]
  • Karakashev, D., Thomsen, A. B. & Angelidaki, A. (2007). Anaerobic biotechnological approaches for production of liquid energy carriers from biomass. Biotechnol. Lett. 29(7), 1005-1012, DOI:10.1007/s10529-007-9360-3.[PubMed][Crossref]
  • Ballesteros, M., Oliva, J. M. & Negro, M. J. (2004). Ethanol from lignocellulosic materials by a saccharification and fermentation process with Kluyveromyces marxianum CECT 10875. Process Biochem. 39, 1843-1848, DOI:10.1016/j.procbio.2003.09.011.[Crossref]
  • Kadar, Zs., Szengyel, Zs. & Reczey, K. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products 20(1), 103-110, DOI:10.1016/j.indcrop.2003.12.015.[Crossref]
  • Karaosmanoglu, F. & Tetik, E. (1999). Charcoal from Pyrolysis of Rapeseed Plant Straw-Stalk. Energy Sources, Part A: Recovery, Utilization, and Environmental Effect 6(21), 503-510.
  • Wojtatowicz, M. (2006). Utilization of distillery effluents and other agricultural wastes. In the expertise "Applicability of agricultural wastes in production of useful chemical substances in green chemistry and white technology processes - assessment of potential scientific research and implementation", 18-26 (in Polish).
  • Witkowska, D. (1994). Protein production using enzymatic hydrolisates of rape straw. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Technologia żywności VII (244), 199-205 (in Polish).
  • Demirbas, A. (2008). Heavy metal adsorption onto agro based waste materials: A review. Journal of Hazardous Materials, 1-24, DOI:10.1016/j.jhazmat.2008.01.024.[Crossref]
  • Ramachandran, S., Singh, S. K., Kumar, S., Larroche, C., Kumar., Soccol, C. R. & Pandey, A. (2007). Oil cakes and their biotechnological applications - A review. Bioresource Technol. 98(10), 2000-2009, DOI:10.1016/j.biortech.2006.08.002.[WoS][Crossref]
  • Antoszkiewicz, Z. (2001). Nutritional value of sunflower seed meal used for the feeding of growing pigs. Doctoral dissertation, Uniwersytet Warmińsko-Mazurski, Olsztyn (in Polish).
  • Schoene, F., Kirchheim, U., Schumann, W. & Ludke, H. (1996). Apparent digestibility of high-fat rapeseed press cake in growing pigs and effects on feed intake, growth and weidh of thyroid and liver. Animal Feed Sci. Technol. 62(2-4), 97-110.[Crossref]
  • Bautista, J., Parrado, J. & Machado, A. (1990). Composition and fractionation of sunflower meal: use of the ligno-cellulosic fraction as substrate in solid-state fermentation. Biol. Waste 32, 225-233, DOI:10.1016/0269-7483(90)90051-S.[Crossref]
  • Nilsson, L. J., Pisarek, M., Buriak, J., Oniszk-Popławska A., Bućko, P. P., Ericsson, K. & Jaworski, Ł. (2006). Energy policy and the role of bioenergy in Poland. Energy policy 34(15), 2263-2278, DOI:10.1016/j.enpol.2005.03.011.[Crossref]
  • Korytkowski, J. A. & Inowolski, A. (2007). A complex system for biofuel production from rapeseed oil as a renewable energy source Przemysł Chem. 86 (3), 195-199 (in Polish).
  • Yorgun, S., Senzos, S. & Kackar, O. M. (2001). Flash pyrolysis of sunflower oil cake for production of liquid fuels. Journal of Analytical and Applied Pyrolysis 60, 1-12, DOI:10.1016/S0165-2370(00)00102-9.[Crossref]
  • Ucar, S. & Ozkan, A. R. (2008). Characterization of products from pyrolysis of rapeseed oil cake. Bioresource Technol. 99(18), 8771-87, DOI:10.1016/j.biortech.2008.04.040.[WoS][Crossref]
  • Ohlson, R. & Anjou, K. (1979). Rapeseed protein products. Journal of the American Oil Chemists Society 56, 431-437.[Crossref]
  • Xu, L. & Diosady, L. L. (2000). Interactions between canola proteins and phenolic compounds in aqueous media. Food Research International 33, 725-731, DOI:10.1016/S0963-9969(00)00062-4.[Crossref]
  • Naczk, M., Amarowicz, R., Sullivan, A. & Shahidi, F. (1997). Current research developments on polyphenolics of rapeseed/canola: a review. Food Chemistry 62(4), 489-502, DOI:10.1016/S0308-8146(97)00198-2.[Crossref]
  • Thiyam, U., Kuhlmann, A., Stockmann, H. & Schwarz, K. (2004). Prospects of rapeseed oil by-products with respect to antioxidative potential. Comptes Rendes Chimie 7(6-7), 611-616, DOI:10.1016/j.crci.2004.02.011.[Crossref]
  • Gattinger, L. D., Duvnjak, Z. & Khan, A. W. (1990). The use of canola meal as a substrate for xylanase production by Trichoderma reesei. Appl. Microbiol. Biotechnol. 33, 21-25.
  • El-Batal, A. I. & Abdel Karem, H. (2001). Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Research International 34(8), 715-720, DOI:10.1016/S0963-9969(01)00093-X.[Crossref]
  • Ebune, A., Al-Asheh, S. & Duvnjak, Z. (1995). Production of phytase during solid state fermentation by Aspergillus ficuum NRRL 3135 in canola meal. Bioresource Technol. 53(1), 7-12, DOI:10.1016/0960-8524(95)00041-C.[Crossref]
  • Haq, I. U., Ashraf, H., Iqbal, J. & Qadeer, M. A. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technol., 87(1). 57-61, DOI:10.1016/S0960-8524(02)00198-0.[Crossref]
  • Kota, K. P. & Sridhar, P.(1999). Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem. 34, 325-328.[Crossref]
  • Sircar, A., Sridhar, P. & Das, P. K. (1998). Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem 33,283-289, DOI:10.1016/S0032-9592(97)00058-7.[Crossref]
  • Shashirekha, M. N., Rajarathnam, S. & Bano, Z. (2002). Enhancement of bioconversion efficiency and chemistry of the mushroom, Pleurotus sajor-caju (Berk and Br.) Sacc. produced on spent rice straw substrate, supplemented with oil seed cakes. Food Chem. 76, 27-31, DOI:10.1016/S0308-8146(01)00244-8.[Crossref]
  • Gąsiorek, E., Fronia, J., Firuta, P. & Podgórski, W. (2007). Rapeseed meal as a substrate for biosynthesis of oxalic acid by solid state fermentation. Acta Sci. Pol.6 (3), 27-32 (in Polish).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10026-011-0012-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.