Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 3 | 45-49

Article title

Preparation of carbon nanotubes using cvd CVD method



Title variants

Languages of publication



In this work preparation and characteristic of modified nanocarbons is described. These materials were obtained using nanocrystalline iron as a catalyst and ethylene as a carbon source at 700°C. The influence of argon or hydrogen addition to reaction mixture was investigated. After ethylene decomposition samples were hydrogenated at 500°C. As a results iron carbide (Fe3C) in the carbon matrix in the form of multi walled carbon nanotubes was obtained. After a treatment under hydrogen atmosphere iron carbide decomposed to iron and carbon and small iron particles agglomerated into larger ones.









Physical description


1 - 1 - 2010
27 - 9 - 2010


  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • Balogh, Z., Halasi, G., Korbély, & Hernadi, K. (2008). CVD-syntesis of multiwall carbon nanotubes over potassium-doped supported catalysts. Appl. Catal. A: General 344, 191-197. doi:10.1016/j.apcata.2008.04.019.[Crossref][WoS]
  • Singh, B. K., Ryu, H., Rajeev, C. C., Nguyen, D. H., Park, S. J., Kim, S. & Lee, J. R. (2006). Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Commun. 139, 102-107. doi:10.1016/j.ssc.2006.05.021.[Crossref]
  • Reddy, N. K., Meunier, J-L. & Coulombe, S. (2006). Growth of carbon nanotubes directly on a nickel surface by thermal CVD. Mater. Sci. 60, 3761-3765. doi:10.1016/j.matlet.2006.03.109.[Crossref]
  • Park, C. & Keane, M. A. (2004). Catalyst support effect in the growth of structured carbon from the decomposition of ethylene over nickel. J. Catal. 221, 386-399. doi:10.1016/j.jcat.2003.08.014.[Crossref]
  • Chen, Ch.M., Dai, Y. M., Huang, J. G. & Jehng, J. M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808-1820. doi:10.1016/j.carbon.2005.12.043.[Crossref]
  • Tobias, G., Shao, L. D., Salzmann, C. G., Huh, Y. & Green, M. L. H. (2006). Purification and opening of carbon nanotubes using steam. J. Phys. Chem. B 110, 22318-22322. doi: 10.1021/jp0631883.[Crossref]
  • Wang, Y. H., Shan, H. W., Hauge, R. H., Pasquali, M. & Smalley, R. A. (2007). A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111, 1249-1252. doi: 10.1021/jp068229+.[Crossref]
  • Hernadi, K., Siska, A., Thien-Nga, L., Forro, L. & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141&142, 203-209. doi:10.1016/S0167-2738(01)00789-5.[Crossref]
  • Pełech, I. & Narkiewicz, U. (2009). Studies of hydrogen interaction with carbon deposit containing carbon nanotubes. J. Non-Cryst. Solids 355, 1370-1375. doi: 10.1016/j.jnoncrysol.2009.05.025.[WoS][Crossref]
  • Fonseca, A., Hernadi, K., Piedigrosso, P., Colomer, J. F., Mukhopadhyay, K., Doome, R., Lazarescu, S., Brio, L. P., Lambin, Ph., Thiry, P. A., Bernaerts, D. & Nagy, J. B. (1998). Synthesis of single- and multi-wall nanotubes over supported. Appl. Phys. A 67, 11-22. doi: 10.1007/s003390050732.[Crossref]
  • Narkiewicz, U., Pełech, I., Rosłaniec, Z., Kwiatkowska, M. & Arabczyk, W. (2007). Preparation of nanocrystalline iron-carbon materiale as fillers for polymers. Nanotechnology 18, 405601. doi:10.1088/0957-4484/18/40/405601.[WoS][Crossref]
  • Rocco, A. M., Cristiane, C. A., Macedo, M. I. F., Maestro, L. F. & Herbst, M. H. (2008). Purification of cataltically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J. Mater. Sci. 43, 557-567. doi: 10.1007/s10853-007-1779-3.[Crossref][WoS]
  • Raymundo-Pinero, E., Cazorla-Amorós, D., Salina-Martinez de Lecea, C. & Linares-Solano, A. (2000). Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step. Carbon 38, 335-344. doi: 10.1016/S0008-6223(99)00109-8.[Crossref]
  • Raymundo-Pinero, E., Cazorla-Amorós, D. & Linares-Solano, A. (2001). Temperature programmed desorption study on the mechanism of SO2 oxidation by activated carbon and activated carbon fibres. Carbon 39, 231-242. doi:10.1016/S0008-6223(00)00119-6.[Crossref]
  • Khavrus, V. O., Lemesh, N. V., Gordijchuk, S. V., Tripolsky, A. I., Iwashchenko, T. S., Biliy, M. M. & Strizhak, P. E. (2008). Chemical catalytic vapor deposition (CCVD) synthesis of carbon annotubes by decomposition of ethylene on metal (Ni, Co, Fe) nanoparticles. React. Kinet. Catal. Lett. 93, 295-303. doi: 10.1007/s11144-008-5225-6.[Crossref]
  • Donato, M. G., Messina, G., Milone, C., Pristone, A. & Santangelo, S. (2008). Experiments on C nanotubes synthesis by Fe-assisted ethane decomposition. Diam. Relat. Mater. 17, 318-324. doi: 10.1016/j.diamond.2007.12.043.[Crossref]
  • Nagaraju, N., Fonseca, A., Konya, Z. & Nagy, J. B. (2002). Alumina and silica supported metal catalysts for the production of carbon nanotubes. J. Mol. Catal. A-Chem. 181, 57-62. doi: S1381-1169(01)00375-2.
  • Escobar, M., Moreno, M. S., Candal, R. J. Marchi, M. C., Caso, A., Polosecki, P. I. Rubiolo, G. H. & Goyanes S. (2007). Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254, 251-256. doi: 10.1016/j.apsusc.2007.07.044.[Crossref]
  • Tripol'skii, A. I., Lemesh, N. V., Khavrus', V. A. & Strizhak, P. E. (2008). Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H2. Theor. Exp. Chem. 44, 240-244. doi: 0040-5760/08/4404-0240.[WoS]
  • Venegoni, D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C. & Kalck, P. (2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40, 1799-1807. doi: S0008-6223(02)00057-X.[Crossref]
  • Ermakova, M. A., Ermakov, D. Y, Chuvilin, A. L. & Kushinov, G. G. (2001). Decomposition of methane over iron catalyst at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201, 183-197. doi:10.1006/jcat.2001.3243.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.